K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

 




 

19 tháng 9 2017

6 tháng 6 2023

Ta có:

\(y'=x^2-2mx+m^2-4\)

\(y''=2x-2m,\forall x\in R\)

Để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3 thì:

\(\left\{{}\begin{matrix}y'\left(3\right)=0\\y''\left(3\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5=0\\6-2m< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m=1,m=5\\m>3\end{matrix}\right.\Leftrightarrow m=5\)

=> B.

22 tháng 4 2019

Đáp án A

(*)

Đặt

Yêu cầu bài toán trở thành: Tìm m để phương trình có nghiệm  

Từ đồ thị đã cho, ta suy ra đồ thị của hàm số  

Từ đó ta có kể quả thỏa mãn yêu cầu bài toán

NV
1 tháng 9 2021

Hàm có 3 điểm cực trị khi và chỉ khi:

\(-m\left(m+1\right)< 0\Rightarrow\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\)