Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
- HỌC TOÁN
- KIỂM TRA
- BÁO CÁO
- THÔNG TIN
Bài toán 104
Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó.
Ta có:
- Số \(14\) không phải là số chính phương
- Số \(144\) là số chính phương vì \(144=12\times12=12^2\)
- Số \(1444\) là số chính phương vì \(1444=38\times38=38^2\) .
Bạn hãy tìm tất cả các số có dạng \(144...4\) (số có các chữ số 4 sau chữ số 1) mà là số chính phương?
----------------------
Các bạn trình bày lời giải đầy đủ vào ô Gửi Ý kiến phía dưới. Năm bạn có lời giải hay và sớm nhất sẽ được cộng/thưởng 1 tháng VIP của Online Math. Đáp án và giải thưởng sẽ được công bố vào Thứ Sáu ngày 3/6/2016. Câu đố tiếp theo sẽ lên mạng vào Thứ Bảy ngày 4/6/2016.
Xem thêm:
- Bài toán 103
- Bài toán 102
- Bài toán 101
- Bài toán 100
- Bài toán 99
Hoàng Thị Thu Huyền Gửi ý kiến 23 bình luận
Đặt $a_1=14;a_2=144;a_3=1444;a_n=144...4$a1=14;a2=144;a3=1444;an=144...4, ta xét các trường hợp:
a, $n<4$n<4
Ta dễ dàng thấy $a_1=14$a1=14 không phải là số chính phương và $a_2=144=12^2$a2=144=122 ; $a_3=1444=38^2$a3=1444=382 là các số chính phương.
b, $n\ge4$n≥4
Ta có: $a_n=144...4=10000b+4444\left(b\in Z\right)$an=144...4=10000b+4444(b∈Z)
Vì $10000\vdots16$10000⋮16 và 4444 chia 16 dư 12 nên $a_n$an chia 16 dư 12
Giả sử $a_n$an là số chính phương, vì $a_n\vdots4$an⋮4 nhưng không chia hết cho 16 nên:
$a_n=\left(4k+2\right)^2=16\left(k^2+k\right)+4$an=(4k+2)2=16(k2+k)+4 $\Rightarrow$⇒ $a_n$an chia 16 dư 4. Vô lý.
Vậy $a_n$an không phải là số chính phương.
Kết luận: Trong dãy số tự nhiên $a_n=144...4$an=144...4, chỉ có $a_2=144$a2=144 và $a_3=1444$a3=1444 là các số chính phương.
Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.
Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.
b,n>4
Ta có : an=144..4=10000b+4444(bεZ)
Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12
Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.
Vậy an không phải là số chính phương.
Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương
Hôm nay olm.vn sẽ hướng dẫn các em cách giải phương trình nghiệm nguyên bằng nguyên lí kẹp. Cấu trúc đề thi hsg, thi chuyên thi violympic.
(3n + 1)2 = 9n2 + 2n + 1 < 9n2 + 3n + 4 \(\forall\) n \(\in\) N (1)
(3n + 2)2 = (3n + 2).(3n +2) = 9n2 + 12n + 4
⇒(3n + 2)2 ≥ 9n2 + 3n + 4 \(\forall\) n \(\in\) N (2)
Kết hợp (1) và (2) ta có: (3n +1)2 < 9n2 + 3n + 4 ≤ (3n + 2)2
Vì (3n + 1)2 và (3n +2)2 là hai số chính phương liên tiếp nên
9n2 + 3n + 4 là số chính phương khi và chỉ khi:
9n2 + 3n + 4 = (3n + 2)2 ⇒ 9n2 + 3n + 4 = 9n2 + 12n + 4
9n2 + 12n + 4 - 9n2 - 3n - 4 = 9n = 0 ⇒ n = 0
Vậy với n = 0 thì 9n2 + 3n + 4 là số chính phương.
Lời giải:
Đặt tổng trên là $A$.
Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)
Xét $n\geq 2$. Khi đó:
$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$
$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$
Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.
Đặt $n=2k$ với $k$ nguyên dương.
Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý
Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.