Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm tất cả các số nguyên dương m,n sao cho p = m^2+n^2 là số nguyên tố và m^3+n^3 - 4 chia hết cho p
TK
2n^2 + n - 7 | n - 2
- 2n^2 - 4n | 2n + 5
5n - 7
- 5n - 10
3
Để ( 2n^2 + n - 7)chia hết cho(n - 2) thì 3 chia hết cho (n - 2)
<=> (n - 2) ∈ Ư(3)
<=> n - 2 = 3 <=> n = 5
hoặc n - 2 = -3 <=> n = -1
hoặc n - 2 = 1 <=> n = 3
hoặc n - 2 = -1 <=> n = 1
Vậy n ∈ {-1;1;3;5} thì 2n^2 + n - 7 chia hết cho n - 2
Để đa thức 10x^2 - 7x + a chia hết cho 2x - 3, ta cần xác định giá trị của a.
Theo lý thuyết chia đa thức, nếu đa thức chia hết cho 2x - 3 thì trải nghiệm của 2x - 3 sẽ là giá trị của x khi đa thức bằng 0.
Vì vậy, để tìm giá trị của a, ta có thể đặt 10x^2 - 7x + a = 0 và giải phương trình này khi x = 3/2 (do 2x - 3 = 0).
Thay x = 3/2 vào phương thức:
10(3/2)^2 - 7(3/2) + a = 0
Đơn giản hóa:
10(9/4) - 21/2 + a = 0
90/4 - 42/4 + a = 0
48/4 + a = 0
12 + a = 0
một = -12
Vì vậy, giá trị của a là -12 để đa thức 10x^2 - 7x + a chia hết cho 2x - 3.