K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

 Lên google search đi

Ta có:

c=a^b+b^a\ge2^2+2^2>2

=> c là số lẻ

=> trong a,b phải có 1 số chẵn

Xét a chẵn => a = 2

=> 2b + b2 = c

Xét b > 3 => b2 chia 3 dư 1

=> b2 chia 3 dư 1

2b chia 3 dư 2

=> 2b + b2 chia hết cho 3

=> c chia hết cho 3

=> c = 3

mà ab + ba = c > 3 ( loại c = 3)

Xét b = 3 => c = 17

Vậy (a,b,c) = (2,3,17) hoặc ( 3,2,17)

25 tháng 7 2021

Bài 2 : 

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca 

<=> a^2 + b^2 + c^2 = ab + bc + ca 

<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca 

<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0 

<=> a = b = c 

NV
25 tháng 7 2021

1.

\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)

2.

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

9 tháng 8 2023

Đặt \(3p+4=k^2\left(k\ge4\right)\)

\(\Leftrightarrow k^2-4=3p\)

\(\Leftrightarrow\left(k-2\right)\left(k+2\right)=3p\)

Ta thấy \(0< k-2< k+2\) nên có 2TH:

TH1: \(\left\{{}\begin{matrix}k-2=1\\k+2=3p\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=3\\3p=5\end{matrix}\right.\), vô lí.

TH2: \(\left\{{}\begin{matrix}k-2=3\\k+2=p\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=5\\p=7\end{matrix}\right.\), thỏa mãn.

Vậy \(p=7\) là số nguyên tố duy nhất thỏa ycbt.

14 tháng 8 2020

Đặt:    \(5p+1=a^3;a\inℕ^∗\)

=>     \(5p=a^3-1\)

<=>   \(5p=\left(a-1\right)\left(a^2+a+1\right)\)

<=>    \(a-1;a^2+a+1\)   đều là ước của 5p \(\in\left\{1;5;p;5p\right\}\)

Do:   \(a\inℕ^∗\)    =>   \(a-1< a^2+a+1\)    Do: p là SNT  =>  \(1< 5p\)

=> Ta thực tế chỉ phải xét 3 trường hợp:

TH1:    \(\hept{\begin{cases}a-1=1\\a^2+a+1=5p\end{cases}}\)

=>    \(a=2\)  

=>    \(5p=2^2+2+1=4+2+1=7\)

=>    \(p=\frac{7}{5}\)     => Loại do p là SNT.

TH2:   \(\hept{\begin{cases}a-1=5\\a^2+a+1=p\end{cases}}\)

=>    \(a=6\)

=>    \(p=6^2+6+1=43\)

THỬ LẠI:     \(5p+1=5.43+1=216=6^3\left(tmđk\right)\)

TH3:    \(\hept{\begin{cases}a-1=p\\a^2+a+1=5\end{cases}}\)

=>    \(a^2+a=4\)

=>   Thử \(a=1;a=2\)đều loại. Và \(a>2\)  thì  \(a^2+a>4\)     (LOẠI)

a = 0 cũng loại do a thuộc N*.

Vậy duy nhất có nghiệm      \(p=43\)    là thỏa mãn điều kiện.

NV
18 tháng 8 2021

\(9=3a^2+2b^2+2bc+2c^2=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+2a^2+\dfrac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)

\(\Rightarrow9\ge\left(a+b+c\right)^2+\dfrac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)

\(\Rightarrow-3\le a+b+c\le3\)

\(T_{max}=3\) khi \(a=b=c=1\)

\(T_{min}=-3\) khi \(a=b=c=-1\)

18 tháng 8 2021

con cảm ơn thầy ah.

NV
30 tháng 3 2021

1. 

\(p=2\Rightarrow p+6=8\) ko phải SNT (ktm)

\(\Rightarrow p>2\Rightarrow p\) lẻ \(\Rightarrow p^2\) lẻ \(\Rightarrow p^2+2021\) luôn là 1 số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số

2.

\(a^2+3a=k^2\Rightarrow4a^2+12a=4k^2\)

\(\Rightarrow4a^2+12a+9=4k^2+9\Rightarrow\left(2a+3\right)^2=\left(2k\right)^2+9\)

\(\Rightarrow\left(2a+3-2k\right)\left(2a+3+2k\right)=9\)

\(\Leftrightarrow...\)

30 tháng 3 2021

Em xin cách làm bài 1 ạ 

NV
21 tháng 8 2021

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow ab+bc+ca\le1\)

\(\Rightarrow P_{max}=1\) khi \(a=b=c\)

Lại có:

\(\left(a+b+c\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow ab+bc+ca\ge-\dfrac{a^2+b^2+c^2}{2}=-\dfrac{1}{2}\)

\(P_{min}=-\dfrac{1}{2}\) khi \(a+b+c=0\)