Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(x+5\right)^2>=0\forall x\)
\(\left(2y-8\right)^2>=0\forall y\)
Do đó: \(\left(x+5\right)^2+\left(2y-8\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+5=0\\2y-8=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-5\\y=4\end{matrix}\right.\)
b: \(\left(x+3\right)\left(2y-1\right)=5\)
=>\(\left(x+3\right)\left(2y-1\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x+3;2y-1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;3\right);\left(2;1\right);\left(-4;-2\right);\left(-8;0\right)\right\}\)
a) \(\left|x\right|\le4\)
\(\Rightarrow\left|x\right|\in\left\{1;2;3;4\right\}\)
\(\Rightarrow x\in\left\{\pm1;\pm2;\pm3;\pm4\right\}\)
Vậy \(x\in\left\{\pm1;\pm2;\pm3;\pm4\right\}\).
b) \(x^2< 20\)
\(\Rightarrow x^2\in\left\{1;4;9;16\right\}\)
\(\Rightarrow x\in\left\{\pm1;\pm2;\pm3;\pm4\right\}\)
Vậy \(x\in\left\{\pm1;\pm2;\pm3;\pm4\right\}\).
c) (x - 2) (x + 3) < 0
=> x - 2 > 0 và x + 3 < 0 hoặc x - 2 < 0 và x + 3 > 0
=> x > 2 và x < -3 (loại) hoặc x < 2 và x > -3
=> -3 < x < 2
=> x thuộc {-2 ; -1 ; 0 ; 1}
Vậy x thuộc {-2 ; -1 ; 0 ; 1}.
d) (x + 4) (x - 2) = 0
=> x + 4 = 0 hoặc x - 2 = 0
=> x = -4 hoặc x = 2
Vậy x thuộc {-4 ; 2}.
Bg
a) Ta có: |x| < 4 (tất cả đều x \(\inℤ\)nhé)
Mà |x| > 0
=> x = {0; +1; +2; +3; +4}
Vậy...
b) x2 < 20 (x \(\inℤ\))
=> x2 < 42 + 4
=> x2 < 42
Vì x2 > 0
=> -4 < x < 4
=> x = {0; +1; +2; +3; +4}
Vậy...
c) (x - 2)(x + 3) < 0 (x \(\inℤ\))
Vì x + 3 > x - 2
=> x - 2 < 0 và x + 3 > 0
Mà x + 3 - (x - 2) = x + 3 - x + 2 = (x - x) + 3 + 2 = 5
=> x - 2 < 0 và x - 2 + 5 > 0
=> -4 < x - 2 < 0
=> x - 2 = {-4; -3; -2; -1}
=> x = {-2; -1; 0; 1}
Vậy...
d) (x + 4)(x - 2) = 0
=> x + 4 = 0 hoặc x - 2 = 0
=> x = -4 hoặc x = 2
Vậy...
\(\Leftrightarrow x^2-10< 0\)
hay \(-\sqrt{10}< x< \sqrt{10}\)
a: Trường hợp 1: p=2
=>p+11=13(nhận)
Trường hợp 2: p=2k+1
=>p+11=2k+12(loại)
b: Trường hợp 1: p=3
=>p+8=11 và p+10=13(nhận)
Trường hợp 2: p=3k+1
=>p+8=3k+9(loại)
Trường hợp 3: p=3k+2
=>p+10=3k+12(loại)
Để p + 11 là số nguyên tố thì p là số chẵn (nếu p là số lẻ thì p + 11 là số chẵn \(\Rightarrow p+11⋮2\) mà chia hết cho một số thì không phải là số nguyên tố)
Trong tập hợp các số nguyên tố chỉ có 2 là số chẵn. Vậy p = 2
b) Để p + 8, p + 10 là số nguyên tố thì p là số lẻ (nếu p là số chẵn thì \(p+8⋮2,p+10⋮2\) mà chia hết cho một số thì không phải là số nguyên tố
Nếu p = 3, p + 8 = 3 + 8 = 11 là số NT; p + 10 = 3 + 10 = 13 là số NT (chọn)
Nếu \(p=3k\left(k\in N|k>1\right)\)thì p là hợp số (loại)
Nếu \(p=3k+1\left(k\in N\right)\Rightarrow p+8=3k+1+8=3k+9⋮3\) (loại)
Nếu \(p=3k+2\left(k\in N\right)\Rightarrow p+10=3k+2+10=3k+9⋮3\)
(loại)
Vậy p=3
xy-2x+y+1=0
x(y-2)+y+1=0
x(y-2)+y=-1
x(y-2)+(y-2)=-1-2
x(y-2)+(y-2).1=-3
(y-2).(x+1)=-3
y-2 E Ư(-3)
y-2 E(1;-1;3;-3)
ta có bảng
y-2 1|-1|3|-3|
x+1 -3|3|-1|1|
y 3|1|5|-1|
x -4|2|-2|0|
vậy các cặp(x;y) là(3;-4);(1;2);(5;-2);(-1;0)
mình làm sai thì thôi bạn nhé=)
Ta có:
\(\frac{x+1}{x+4}=\frac{x+4-3}{x+4}=\frac{x+4}{x+4}-\frac{3}{x+4}=1-\frac{3}{x+4}\)
Suy ra x+4 thuộc Ư(3)
Ư(3)là:[1,-1,3,-3]
Ta có bảng sau:
x+4 | 1 | -1 | 3 | -3 |
x | -3 | -5 | -1 | -7 |
vậy x=-3;-5;-1;-7
ủng hộ đầu xuân năm mới tròn 780 nha
Ta có: x + 1 = x + 4 - 3
Mà x + 1 chia hết cho x + 4
nên x + 4 - 3 chia hết cho x + 4
=> x + 4 chia hết cho x + 4 và 3 chia hết cho x + 4
x + 4 \(\in\)Ư(3) = {-1;1;-3;3}
x \(\in\){-5;-3;-7;-1}
a)\(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\Rightarrow x=3\end{cases}}\)
vậy x=0 hoặc x=3
b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}\left|x\right|-3>0\\x^2+4>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|x\right|>3\\x^2>-4\left(ktm\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x>3\\x>-3\end{cases}}\Leftrightarrow x>3}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|x\right|-3< 0\\x^2+4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|x\right|< 3\\x^2< -4\left(ktm\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< -3\end{cases}}}\Leftrightarrow x< -3\)
vậy....
a, \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\)
TH1 : x = 0 TH2 : x = 3
b, \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}-3< x< 3\left(tm\right)\\x^2< -4\left(ktm\right)\end{cases}}}\)