K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

Do \(3x-1⋮y\) và \(3y+1⋮x\)nên \(\left(3x-1\right)\left(3y+1\right)⋮xy\)

\(\Rightarrow9xy+3x+3y+1⋮xy\)

Mà \(9xy⋮xy\)

\(\Rightarrow\frac{3x}{y}+3+y\frac{1}{y}⋮x\)

Do vai trò của x , y như nhau , nên giả sử 

\(\Rightarrow\frac{x}{y}\le1\)

\(\Rightarrow\frac{3x}{y}+3+\frac{1}{y}< 7\)

\(\Rightarrow1< x< 7\)

\(\Rightarrow x=2;3;4;5;6\)

Thay x vào 3x + 1 \(⋮\)y và 3y-1\(⋮x\)

26 tháng 8 2020

A.

( 2x + 1 )( y - 5 ) = 12

Ta có bảng sau :

2x+11-12-23-34-46-612-12
y-512-126-64-43-32-21-1
x0-10,5-1,51-21,5-2,52,5-3,55,5-6,5
y17-711-191827364

Vì x , y thuộc N => ( x ; y ) = { ( 0 ; 17 ) , ( 1 ; 9 ) }

B.

4n - 5 chia hết cho 2n - 1

=> 2( 2n - 1 ) - 3 chia hết cho 2n - 1

=> 3 chia hết cho 2n - 1

=> 2n - 1 thuộc Ư(3) = { ±1 ; ±3 }

2n-11-13-3
n102-1

Vì n là số tự nhiên => n = { 1 ; 0 ; 2 }

25 tháng 10 2016

t​a có: xy+3y-y=6

=> xy+2y=6

=> y(x+2)=6

vì x,y nguyên nên y,(x+2) là các ước của 6

ta có bảng sau

x+21-12-23-36-6
y6-63-32-21-1
x-1-30-41-54-8
25 tháng 10 2016

xy+3y-y=6

xy+y(3-1)=6

xy+y2=6

y(x+2)=6

lập bảng

x+223-2-3
y32-3-2
x01-4-5

vậy với các cặp x,y thỏa mãn là:

nếu y=3 thì x=0;nếu y=2 thì x=1;nếu y=-2 thì x=-4;nếu y=-3 thì x=-5

13 tháng 12 2017

a) (x,y)=(0,17),(1,9)

k mk di

28 tháng 1 2020

a)               ta có : 12 = 6.2 = 2.6 = 12.1 = 1.12

=) 2x+1 = 6;2;12;1

=) x = 0

=) y - 5 = 2;6;1;12

=) y= 7;11;6;17

21 tháng 3 2016

sai đề rồi phải tìm x hay y chứ

AH
Akai Haruma
Giáo viên
14 tháng 9

Lời giải:

Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm) 

Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm) 

Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)

Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.

AH
Akai Haruma
Giáo viên
14 tháng 9

Lời giải:

Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm) 

Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm) 

Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.

Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)

Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.

22 tháng 10 2017

bó tay tui cung dăng vướng chan ở câu hỏi này hihi

15 tháng 7 2018

bo tay