Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: x > 0
\(0< x< 1\Leftrightarrow\log_2x< 0\)
Đặt \(t=\log_2x\), pt đã cho trở thành \(t^2-2mt+m+2=0\) (1)
YCBT ↔ pt (1) có hai nghiệm âm phân biệt
\(\Leftrightarrow\begin{cases}\Delta'>0\\S< 0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+3m+2>0\\2m< 0\\m+2>0\end{cases}\) \(\Leftrightarrow-1< m< 0\)
Câu 1:
\(\Leftrightarrow x^2-4x+5+\sqrt{x^2-4x+5}-5=m\)
Đặt \(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}=a\ge1\)
\(\Rightarrow a^2+a-5=m\) (1)
Xét phương trình: \(x^2-4x+5=a^2\Leftrightarrow x^2-4x+5-a^2=0\)
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=5-a^2\end{matrix}\right.\)
\(\Rightarrow\) Nếu \(5-a^2>0\Rightarrow1\le a< \sqrt{5}\) thì pt có 2 nghiệm dương
Nếu \(5-a^2\le0\) \(\Leftrightarrow a\ge\sqrt{5}\) thì pt có 1 nghiệm dương
Vậy để pt đã cho có đúng 2 nghiệm dương thì: (1) có đúng 1 nghiệm thỏa mãn \(1\le a< \sqrt{5}\) hoặc có 2 nghiệm pb \(a_1>a_2\ge\sqrt{5}\)
Xét \(f\left(a\right)=a^2+a-5\) với \(a\ge1\)
\(f'\left(a\right)=0\Rightarrow a=-\frac{1}{2}< 1\Rightarrow f\left(a\right)\) đồng biến \(\forall a\ge1\) \(\Rightarrow y=m\) chỉ có thể cắt \(y=f\left(a\right)\) tại nhiều nhất 1 điểm có hoành độ \(a\ge1\)
\(f\left(1\right)=-3\) ; \(f\left(\sqrt{5}\right)=\sqrt{5}\)
\(\Rightarrow\) Để pt có 2 nghiệm pb đều dương thì \(-3\le m< \sqrt{5}\)
Câu 2:
\(x^2-3x+2\le0\Leftrightarrow1\le x\le2\) (1)
Ta có: \(mx^2+\left(m+1\right)x+m+1\ge0\)
\(\Leftrightarrow m\left(x^2+x+1\right)\ge-x-1\)
\(\Leftrightarrow m\ge\frac{-x-1}{x^2+x+1}=f\left(x\right)\) (2)
Để mọi nghiệm của (1) là nghiệm của (2) \(\Leftrightarrow\left(2\right)\) đúng với mọi \(x\in\left[1;2\right]\)
\(\Rightarrow m\ge\max\limits_{\left[1;2\right]}f\left(x\right)\)
\(f'\left(x\right)=\frac{-\left(x^2+x+1\right)+\left(2x+1\right)\left(x+1\right)}{\left(x^2+x+1\right)^2}=\frac{x^2+2x}{\left(x^2+x+1\right)^2}>0\) \(\forall x\in\left[1;2\right]\)
\(\Rightarrow f\left(x\right)\) đồng biến \(\Rightarrow\max\limits_{\left[1;2\right]}f\left(x\right)=f\left(2\right)=-\frac{3}{7}\)
\(\Rightarrow m\ge-\frac{3}{7}\)
Đáp án B.
Đặt t = log2 x,
khi đó m + 1 log 2 2 x + 2 log 2 x + m - 2 = 0
⇔ m + 1 t 2 + 2 t + m - 2 = 0 (*).
Để phương trình (*) có hai nghiệm phân biệt
Khi đó gọi x1, x2 lần lượt hai nghiệm của phương trình (*).
Vì 0 < x1 < 1 < x2 suy ra
Câu 1:
Hệ điều kiện: \(\left\{{}\begin{matrix}2x^2+3>x^2+mx+1\\x^2+mx+1>0\end{matrix}\right.\) \(\forall x\in R\)
Xét BPT đầu tiên:
\(\Leftrightarrow x^2-mx+2>0\) \(\forall x\)
\(\Leftrightarrow\Delta=m^2-8< 0\Rightarrow-2\sqrt{2}< m< 2\sqrt{2}\)
Xét BPT thứ 2:
\(x^2+mx+1>0\)
\(\Leftrightarrow\Delta=m^2-4< 0\Rightarrow-2< m< 2\)
Kết hợp lại ta được \(-2< m< 2\)
Câu 2:
\(\left|x+2+\left(y-3\right)i\right|=2\sqrt{2}\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2=8\)
\(\Rightarrow\) Quỹ tích z là các điểm \(M\left(x;y\right)\) nằm trên đường tròn (C) tâm \(I\left(-2;3\right)\) bán kính \(R=2\sqrt{2}\)
Gọi \(A\left(-1;-6\right);B\left(7;2\right)\) và \(C\left(3;-2\right)\) là trung điểm AB
\(\Rightarrow P=\left|z+1+6i\right|+\left|z-7-2i\right|=MA+MB\)
Gọi d là đường thẳng qua C và I, cắt đường tròn (C) tại D trong đó I nằm giữa C và D
\(\Rightarrow P_{max}\) khi \(M\equiv D\)
\(\overrightarrow{CI}=\left(-5;5\right)\Rightarrow\) đường thẳng CI nhận \(\overrightarrow{n_{CI}}=\left(1;1\right)\) là 1 vtpt
\(\Rightarrow\)Phương trình CI: \(x+y-1=0\)
Tọa độ D là nghiệm: \(\left\{{}\begin{matrix}\left(x+2\right)^2+\left(y-3\right)^2=8\\x+y-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-4\end{matrix}\right.\)
\(\Rightarrow y=1-x=5\Rightarrow\left\{{}\begin{matrix}x=-4\\y=5\end{matrix}\right.\)