Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Điều kiện để hàm số có 3 cực trị là m> 0
+ Các điểm cực trị tạo thành tam giác cân có đáy bằng 2√m, đường cao bằng m2. (như hình bên )
Ta được S ∆ A B C = 1 2 A C . B D = m . m 2 .
+ Để tam giác có diện tích nhỏ hơn 1 thì m . m 2 < 1 h a y 0 < m < 1
Chọn D.
Chọn D
Khi đó đồ thị hàm số có 3 điểm cực trị là:
Vì B, C đối xứng với nhau qua trục tung nên B C ⊥ O A
Do đó O là trực tâm tam giác:
Kết hợp điều kiện, vậy m = 1 là giá trị cần tìm
+ Đạo hàm y’ = 4x3- 4mx
Hàm số có 3 điểm cực trị khi và chỉ khi m≠0.
+ Khi đó đồ thị hàm số có 3 điểm cực trị là:
+ Vì B,C đối xứng nhau qua trục tung nên BC và OA vuông góc với nhau.
Do đó O là trực tâm tam giác ABC khi và chỉ khi OB vuông góc AC hay
Với
Kết hợp với điều kiện m ≠ 0 thì m = 1 là giá trị cần tìm.
Chọn B.
Chọn D
y ' = 4 x 3 - 4 m x
Hàm số có 3 điểm cực trị ⇔ m > 0
Khi đó đồ thị hàm số có 3 điểm cực trị là
A (0;m-1)
B ( m ; m 2 + m - 1 )
C ( - m ; m 2 + m - 1 )
Vì B,C đối xứng nhau qua trục tung nên B C ⊥ O A
Do đó O là trực tâm tam giác ABC
Với O B ⇀ = ( m , m 2 + m - 1 ) , A C ⇀ = ( - m , m 2 )
Vậy m = 1 là gtct
Chọn A
Ta có:
Hàm số (C) có ba điểm cực trị ⇔ m ≠ 0 (*) .
Với điều kiện (*) gọi ba điểm cực trị là:
.
Do đó nếu ba điểm cực trị tạo thành một tam giác vuông cân, thì sẽ vuông cân tại đỉnh A.
Do tính chất của hàm số trùng phương, tam giác ABC đã là tam giác cân rồi, cho nên để thỏa mãn điều kiện tam giác là vuông, thì AB vuông góc với AC
Tam giác ABC vuông khi:
Vậy với m = ± 1 thì thỏa mãn yêu cầu bài toán.
[Phương pháp trắc nghiệm]
Yêu cầu bài toán
⇔ b 3 8 a + 1 = 0 ⇔ - m 6 + 1 = 0
⇔ m = ± 1
Chọn C.
Cách 1: TXĐ: D = ℝ
Hàm số đã cho có ba điểm cực trị khi và chỉ khi m > 0 (*)
Với điều kiện (*) đồ thị hàm số có ba điểm cực trị là:
Ta có:
Suy ra tam giác ABC cân tại A. Do đó tam giác ABC vuông cân tại A
Kết hợp (*) suy ra m = 1.
Cách 2: Áp dụng công thức tính nhanh: Đồ thị hàm số có ba điểm cực trị là ba đỉnh của một tam giác vuông cân khi và chỉ khi
Ta có: ycbt ⇔ ( - 2 m ) 3 + 8 = 0
Để đồ thị hàm trùng phương \(y=ax^4+bx^2+c\) có 3 cực trị tạo thành một tam giác vuông cân thì các hệ số a, b, c cần thỏa điều kiện:
\(\left\{{}\begin{matrix}a.b< 0\\b^3=-8a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m< 0\\\left(2m\right)^3=-8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m=-1\end{matrix}\right.\) \(\Rightarrow m=-1\)