Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
#)Giải :
Bài 1 :
a) Ta có :
\(\frac{x}{y}=\frac{7}{10}\Leftrightarrow10x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{10}\)
\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow8y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{10}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{10}=\frac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{7}=\frac{y}{10}=\frac{z}{16}=\frac{2x-y+3z}{14-10+48}=\frac{104}{52}=2\hept{\begin{cases}\frac{x}{7}=2\\\frac{y}{10}=2\\\frac{z}{16}=2\end{cases}\Rightarrow\hept{\begin{cases}x=14\\y=20\\z=32\end{cases}}}\)
Vậy x = 14; y = 20; z = 32
a: Vì y tỉ lệ thuận với x theo hệ số tỉ lệ k
nên y=kx
hay \(k=\dfrac{1}{3}\)
b: \(y=\dfrac{1}{3}x;x=3y\)
\(\frac{2x-y}{2}=\frac{x+2y}{3}\)
\(\Leftrightarrow3\left(2x-y\right)=2\left(x+2y\right)\)
\(\Leftrightarrow6x-3y=2x+4y\)
\(\Leftrightarrow6x-2x=4y+3y\)
\(\Leftrightarrow4x=7y\)
\(\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Vậy tỉ số giữa x và y là \(\frac{x}{7}=\frac{y}{4}\)
\(\frac{2x-y}{2}=\frac{x+2y}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+2y\right)\)
\(\Rightarrow6x-3y=2x+4y\)
\(\Rightarrow6x-2x=3y+4y\)
\(\Rightarrow4x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{4}{7}\)
Vậy tỉ số giữa x và y là \(\frac{4}{7}\)
_Chúc bạn học tốt_