Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, bạn ghi lại đề nhé
b, gọi UCLN là d
=>2n+1 chia hết cho d=>2n+1 .3 chia hết cho d=>6n+3 chia hết cho d
=>3n+1 chia hết cho d=>3n+1 .2 chia hết cho d=>6n+2 chia hết cho d
=>(6n+3)-(6n+2) chia hết cho d
=> 1 chia hết cho d
=> d=1 hoặc -1
=> ƯCLN(2n+1;3n+1)=1;-1
Gọi d là ƯCLN(2n+1;3n+1)
=>2n+1 chia hết cho d và 3n+1 chia hết cho d
=>3(2n+1)chia hết cho d và 2(3n+1) chia hết cho d
=>6n+3 chia hết cho d và 6n+2 chia hết cho d
=>(6n+3)-(6n+2) chia hết cho d
=>1 chia hết cho d;ƯCLN(2n+1;3n+1)=1
=>ƯC(2n+1;3n+1)=1
Lời giải:
Gọi $d=ƯCLN(5n+1, 3n+2)$
$\Rightarrow 5n+1\vdots d; 3n+2\vdots d$
$\Rightarrow 5(3n+2)-3(5n+1)\vdots d$
$\Rightarrow 7\vdots d$
$\Rightarrow d=1$ hoặc $d=7$
a: Gọi d=UCLN(2n+1;6n+5)
\(\Leftrightarrow6n+5-3\left(2n+1\right)⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+1 là số lẻ
nên n=1
=>ƯCLN(2n+1;6n+5)=1
=>ƯC(2n+1;6n+5)={1;-1}
b: Gọi d=ƯCLN(2n+1;3n+1)
\(\Leftrightarrow6n+3-6n-2⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>ƯC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(5n+3;2n+1)
\(\Leftrightarrow10n+6-10n-5⋮d\)
\(\Leftrightarrow1⋮d\)
=>ƯC(5n+3;2n+1)={1;-1}
Goi UC(2n+1;3n+1)=d
Ta co:+/2n+1 chia het cho d=>3(2n+1) chia het cho d
Hay 6n+3 chia het cho d(1)
3n+1 chia het cho d=>2(3n+1) chia het cho d
Hay 6n+2 chia het cho d(2)
Tu (1) va (2) =>(6n+3-6n-2) chia het cho d
=>1 chia het cho d
=>d la uoc cua 1
=>d thuoc tap hop 1;-1
=>tap hop uoc chung cua 2n+1 va 3n+1 la -1;1
Gọi UCLN(2n+1;3n+1) là d
Ta có:
[3(2n+1)]-[2(3n+1)] chia hết d
=>[6n+3]-[6n+2] chia hết d
=>1 chia hết d
=>d=1
Vậy UC(2n+1;3n+1)=1
\(G\text{ọi}dl\text{à}UCLN\left(2n+1;3n+1\right)\\ =>2n+1v\text{à}3n+1⋮d\\ =>\left(2n+1\right)-\left(3n+1\right)⋮d\\ =>3\left(2n+1\right)-\left(2\left(3n+1\right)\right)⋮d\)
\(=>6n+3-6n-2⋮d\\ =1⋮d\\ =>d=1\)
Vậy UCLN(2n+1;3n+1) là 1 hay UC (2n+1;3n+1) là 1