Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath
Gọi d = ƯCLN(3n + 1; 5n + 4) (d thuộc N*)
=> 3n + 1 chia hết cho d; 5n + 4 chia hết cho d
=> 5.(3n + 1) chia hết cho d; 3.(5n + 4) chia hết cho d
=> 15n + 5 chia hết cho d; 15n + 12 chia hết cho d
=> (15n + 12) - (15n + 5) chia hết cho d
=> 15n + 12 - 15n - 5 chia hết cho d
=> 7 chia hết cho d
=> d thuộc {1 ; 7}
Mà 3n + 1 và 5n + 4 là 2 số không nguyên tố cùng nhau => d khác 1
=> d = 7
=> ƯCLN(3n + 1; 5n + 4) = 7
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
Goi UCLN(2n+1;3n+1;5n+2)=d
Ta co:
+/2n+1 chia het cho d(1)
+/3n+1 chia het cho d(2)
+ 5n+2 chia hết cho d (3)
Tu (1); (2) và (3) =>(5n+2-2n-1-3n-1) chia het cho d
=>0 chia het cho d
Goi UC(2n+1;3n+1)=d
Ta co:+/2n+1 chia het cho d=>3(2n+1) chia het cho d
hay 6n+3 chia het cho d(1)
+/3n+1 chia het cho d=>2(3n+1) chia het cho d
hay 6n+2 chia het cho d(2)
Tu (1) va (2) =>(6n+3-6n-2) chia het cho d
=>1 chia het cho d
=>d la uoc cua 1
=>d thuoc tap hop 1;-1
=>tap hop uoc chung cua 2n+1 va 3n+1 la -1;1
Goi ƯCLN(2n+1;3n+1) là d
=> \(3\left(2n+1\right)-2\left(3n+1\right)\) chia hết cho d
=> \(6n+3-6n-2\) chia hết cho d
=> 1 chia d
=> d\(\inƯ_{\left(1\right)}\)
=> d=1 ; d= - 1
Mà d lớn nhất
=> d=1
Đặt UCLN (2n+1 và 3n+1)=d
\(\Rightarrow\) 2n+1 chia hết cho d và 3n+1 chia hết cho d
\(\Rightarrow\) 6n+3 chia hết cho d và 6n+2 chia hết cho d
\(\Rightarrow\) 1 chia hết cho d
\(\Rightarrow\) d=1 \(\Rightarrow\)ƯCLN (2n+1 và 3n+1)=1