Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(3^{x+1}\cdot3=9^4\)
\(\Leftrightarrow3^{x+2}=3^8\)
=>x+2=8
hay x=6
c: \(\left|x+\dfrac{1}{2}\right|-\dfrac{5}{3}=1\)
=>|x+1/2|=8/3
=>x+1/2=8/3 hoặc x+1/2=-8/3
=>x=13/6 hoặc x=-19/6
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn nhé.
a/ \(-12\left(x-5\right)+7\left(3-x\right)=5\)
\(< =>-12x+60+21-7x=5\)
\(< =>-19x+81=5\)
\(< =>-19x=-76\)
\(< =>x=\frac{76}{19}\)
b/ 30(x+2)-6(x-5)-24x=100
<=>30x + 60 - 6x + 30 - 24x =100
<=> 90=100( vô lý)
c/ \(\left(x-1\right)\left(x^2+1\right)=0\)
\(< =>\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}}< =>\hept{\begin{cases}x=1\\x^2=-1\left(voly\right)\end{cases}}\)
d/ làm rồi mà
a. \(-12.\left(x-5\right)+7.\left(3-x\right)=5\)
\(-12x+60+21-7x=5\)
\(-19x+81=5\)
\(-19x=-76\)
\(x=4\)
b. \(30.\left(x+2\right)-6.\left(x-5\right)-24x=100\)
\(30x+60-6x+30-24x=100\)
\(\left(30x-6x-24x\right)+\left(60+30\right)=100\)
\(90=100\)(vô lí)
\(\Rightarrow x=\varnothing\)
c. \(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x^2=-1\left(loại\right)\end{cases}}}\)
\(\Rightarrow x=1\)
Câu d) chính là câu a) :D
\(m.3^{x^2-3x+2}+3^{4-x^2}=3^{6-3x}+m\)
\(\Leftrightarrow m.3^{x^2-3x+2}+3^{6-3x-\left(x^2-3x+2\right)}=3^{6-3x}+m\)
Đặt \(\left\{{}\begin{matrix}x^2-3x+2=a\\6-3x=b\end{matrix}\right.\)
\(m.3^a+3^{b-a}=3^b+m\Leftrightarrow m\left(3^a-1\right)=3^b-3^{b-a}\)
\(\Leftrightarrow m.\left(3^a-1\right)=3^{b-a}\left(3^a-1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3^a-1=0\\m=3^{b-a}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3^{x^2-3x+2}=1\\3^{4-x^2}=m\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\3^{4-x^2}=m\end{matrix}\right.\)
Để pt có đúng 3 nghiệm thực thì \(3^{4-x^2}=m\) có nghiệm duy nhất hoặc có 1 nghiệm bằng 1 hoặc 2.
- Nếu \(x=1\Rightarrow m=3^3=27\)
- Nếu \(x=2\Rightarrow m=3^0=1\)
Xét hàm \(f\left(x\right)=3^{4-x^2}\Rightarrow f'\left(x\right)=-2x.3^{4-x^2}.ln3\)
\(\Rightarrow f\left(x\right)\) đồng biến khi \(x< 0\), nghịch biến khi \(x>0\)
\(\Rightarrow\) Phương trình có nghiệm duy nhất khi \(x=0\Rightarrow m=3^4=81\)
\(\Rightarrow m=\left\{1;27;81\right\}\)
d) Đưa 2 vế về cùng cơ số 2, ta được
\(2^{-3}.2^{4x-6}=\left(2^{\frac{-5}{2}}\right)^x\) hay \(2^{4x-9}=2^{\frac{5}{2}x}\)
Do đó :
\(4x-9=\frac{5}{2}x\Leftrightarrow\frac{3}{2}x=9\Leftrightarrow x=6\)
Vậy phương trình đã cho chỉ có 1 nghiệm x=6
c) Phương trình đã cho tương đương với :
\(\frac{1}{4}.4^x+16.4^x=10\Leftrightarrow\frac{33}{2}.4^x=10\Leftrightarrow4^x=\frac{20}{33}\Leftrightarrow x=\log_4\frac{20}{33}\)
Vậy nghiệm của phương trình là \(x=\log_4\frac{20}{33}\)
70-5(x-3)=45
5(x-3)=70-45=25
x-3=25:5
x=5 cảm ơn tao đi chúc may mắn mấy nhóc