Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: 10km=10000m
10000m dây đồng có cân nặng là:
\(47:5\cdot10000=94000\left(g\right)\)
b: 300g=0,3kg=0,003 tạ
0,003 tạ nặng:
\(2,5:1\cdot0,003=\dfrac{3}{400}\left(kg\right)\)
Câu 1:
a:
\(\left|1-2x\right|>=0\forall x\)
=>\(3\left|1-2x\right|>=0\forall x\)
=>\(3\left|1-2x\right|-5>=-5\forall x\)
=>\(A>=-5\forall x\)
Dấu '=' xảy ra khi 1-2x=0
=>2x=1
=>x=1/2
Vậy: \(A_{Min}=-5\) khi x=1/2
b: \(2x^2>=0\forall x\)
=>\(2x^2+1>=1\forall x\)
=>\(\left(2x^2+1\right)^4>=1^4=1\forall x\)
=>\(\left(2x^2+1\right)^4-3>=1-3=-2\forall x\)
=>B>=-2\(\forall\)x
Dấu '=' xảy ra khi x=0
c: \(\left|x-\dfrac{1}{2}\right|>=0\forall x\)
\(\left(y+2\right)^2>=0\forall y\)
Do đó: \(\left|x-\dfrac{1}{2}\right|+\left(y+2\right)^2>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+2=0\end{matrix}\right.\)
=>x=1/2 và y=-2
Câu 5:
a: Hệ số tỉ lệ k của y đối với x là:
\(k=\dfrac{y}{x}=\dfrac{3}{-6}=-\dfrac{1}{2}\)
b: \(\dfrac{y}{x}=-\dfrac{1}{2}\)
=>\(y=-\dfrac{1}{2}x\)
=>\(x=\dfrac{\left(-2\right)\cdot y}{1}=-2y\)
c: Khi x=1/2 thì \(y=-\dfrac{1}{2}\cdot\dfrac{1}{2}=-\dfrac{1}{4}\)
d: Khi y=-8 thì \(x=\left(-2\right)\cdot\left(-8\right)=16\)
Câu 3:
Gọi số học sinh của hai lớp 7A và 7B lần lượt là a(bạn) và b(bạn)
(Điều kiện: \(a,b\in Z^+\))
Lớp 7A có ít hơn lớp 7B là 5 bạn nên b-a=5
Số học sinh của lớp 7A và lớp 7B lần lượt tỉ lệ với 8 và 9 nên ta có
\(\dfrac{a}{8}=\dfrac{b}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{9}=\dfrac{b-a}{9-8}=\dfrac{5}{1}=5\)
=>\(a=5\cdot8=40;b=5\cdot9=45\)
Vậy: Lớp 7A có 40 bạn; lớp 7B có 45 bạn
Câu 4:
Gọi khối lượng giấy vụn lớp 6a,6b,6c quyên góp được lần lượt là a(kg),b(kg),c(kg)
(Điều kiện: a>0;b>0;c>0)
Vì khối lượng giấy vụn mà ba lớp 6a,6b,6c quyên góp được lần lượt tỉ lệ với 9;7;8 nên \(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}\)
Tổng khối lượng giấy vụn ba lớp quyên góp được là 120kg nên a+b+c=120
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}=\dfrac{a+b+c}{9+7+8}=\dfrac{120}{24}=5\)
=>\(a=5\cdot9=45;b=5\cdot7=35;c=8\cdot5=40\)
Vậy: Lớp 6a quyên góp được 45kg; lớp 6b quyên góp được 35kg; lớp 6c quyên góp được 40kg
x/2013 - 1/10 - 1/15 - 1/21 - ... - 1/120 = 5/8
x/2013 – (2/20 + 2/30 + 2/42 + … + 2/240) = 5/8
x/2013 – 2 x (1/(4x5) + 1/(5x6) + 1/(6x7) + … + 1/(15x16)) = 5/8
x/2013 – 2 x (1/4 – 1/16) = 5/8
x/2013 – 2 x 3/16 = 5/8
x/2013 = 5/8 + 6/16 = 1
x = 2013
đây là đáp án của tôi
x/2013 - 1/10 - 1/15 - 1/21 - ... - 1/120 = 5/8
x/2013 – (2/20 + 2/30 + 2/42 + … + 2/240) = 5/8
x/2013 – 2 x (1/(4x5) + 1/(5x6) + 1/(6x7) + … + 1/(15x16)) = 5/8
x/2013 – 2 x (1/4 – 1/16) = 5/8
x/2013 – 2 x 3/16 = 5/8
x/2013 = 5/8 + 6/16 = 1
x = 2013
Bài làm:
a) Ta có: \(\left(-\frac{3}{8}x^2z\right).\left(\frac{2}{3}xy^2z^2\right).\left(\frac{4}{5}x^3y\right)\)
\(=-\frac{1}{5}x^6y^3z^3\)
b) Tại x=-1 ; y=-2 ; z=3 thì giá trị đơn thức là:
\(-\frac{1}{5}.\left(-1\right)^6.\left(-2\right)^3.3^3=\frac{216}{5}\)
a) Ta có : \(\left(\frac{-3}{8}x^2z\right)\cdot\frac{2}{3}xy^2z^2\cdot\frac{4}{5}x^3y=\left(-\frac{3}{8}\cdot\frac{2}{3}\cdot\frac{4}{5}\right)\cdot x^2xx^3\cdot y^2y\cdot zz^2=-\frac{1}{5}x^6y^3z^3\)
b) Với x = -1 ; y = -2 , z = 3
Thế vào ba đơn thức trên và đơn thức tích ta được :
\(\frac{-3}{8}x^2z=\frac{-3}{8}\left(-1\right)^2\cdot3=\frac{-3}{8}\cdot1\cdot3=\frac{-9}{8}\)
\(\frac{2}{3}xy^2z^2=\frac{2}{3}\cdot\left(-1\right)\cdot\left(-2\right)^2\cdot3^2=\frac{2}{3}\left(-1\right)\cdot4\cdot9=-24\)
\(\frac{4}{5}x^3y=\frac{4}{5}\left(-1\right)^3\cdot\left(-2\right)=\frac{4}{5}\left(-1\right)\left(-2\right)=\frac{8}{5}\)
\(-\frac{1}{5}x^6y^3z^3=-\frac{1}{5}\left(-1\right)^6\left(-2\right)^3\cdot3^3=-\frac{1}{5}\cdot1\cdot\left(-8\right)\cdot27=\frac{216}{5}\)
\(x\) + \(\dfrac{1}{3}\) = \(\dfrac{y}{5}\) và \(x\) + y = 15
\(x\) + y = 15 ⇒ \(x\) = 15 - y Thay vào \(x\) + \(\dfrac{1}{3}\) = \(\dfrac{y}{5}\) ta có:
15 - y + \(\dfrac{1}{3}\) = \(\dfrac{y}{5}\)
\(\dfrac{y}{5}\) + y = 15 + \(\dfrac{1}{3}\)
\(\dfrac{6y}{5}\) = \(\dfrac{46}{3}\)
y = \(\dfrac{46}{3}\) : \(\dfrac{6}{5}\)
y = \(\dfrac{115}{9}\)
thay y = \(\dfrac{115}{9}\) vào \(x\) = 15 - \(\dfrac{115}{9}\) ta có \(x\) = 15 - \(\dfrac{115}{9}\) ⇒ \(x\) = \(\dfrac{20}{9}\)
Vậy (\(x\); y) = (\(\dfrac{20}{9}\); \(\dfrac{115}{9}\))
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
(x + 1)/3 = y/5 = (x + 1 + y)/(3 + 5) = (15 + 1)/8 = 2
*) (x + 1)/3 = 8
x + 1 = 8.3
x + 1 = 24
x = 24 - 1
x = 23
*) y/5 = 8
y = 8.5
y = 40
Vậy x = 23; y = 40
a) \(5\dfrac{1}{3}:\left(\dfrac{5}{4}-x\right)=0,8\\ \Rightarrow\dfrac{5}{4}-x=5\dfrac{1}{3}:0,8\\ \Rightarrow\dfrac{5}{4}-x=\dfrac{16}{3}:\dfrac{4}{5}\\ \Rightarrow\dfrac{5}{4}-x=\dfrac{16}{3}\times\dfrac{5}{4}\\ \Rightarrow\dfrac{5}{4}-x=\dfrac{20}{3}\\ \Rightarrow x=\dfrac{5}{4}-\dfrac{20}{3}\\ \Rightarrow x=-\dfrac{65}{12}\)
b) \(\dfrac{3}{10}x-2\dfrac{1}{3}=\dfrac{-28}{5}:\dfrac{2}{15}\\ \Rightarrow\dfrac{3}{10}x-\dfrac{7}{3}=\dfrac{-28}{5}\times\dfrac{15}{2}\\ \Rightarrow\dfrac{3}{10}x-\dfrac{7}{3}=-42\\ \Rightarrow\dfrac{3}{10}x=-42+\dfrac{7}{3}\\ \Rightarrow\dfrac{3}{10}x=\dfrac{-119}{3}\\ \Rightarrow x=\dfrac{-119}{3}:\dfrac{3}{10}\\ \Rightarrow x=-\dfrac{1190}{9}\)
a)
\(5\dfrac{1}{3}:\left(\dfrac{5}{4}-x\right)=0,8\\ \Rightarrow\dfrac{16}{3}:\left(\dfrac{5}{4}-x\right)=\dfrac{4}{5}\\ \Rightarrow\dfrac{5}{4}-x=\dfrac{16}{3}:\dfrac{4}{5}\\ \Rightarrow\dfrac{5}{4}-x=\dfrac{20}{3}\\ \Rightarrow x=\dfrac{5}{4}-\dfrac{20}{3}\\ \Rightarrow x=\dfrac{-65}{12}\)
b)
\(\dfrac{3}{10}x-2\dfrac{1}{3}=\dfrac{-28}{5}:\dfrac{2}{15}\\ \Rightarrow\dfrac{3}{10}x-\dfrac{7}{3}=\dfrac{-28}{5}\cdot\dfrac{15}{2}\\ \Rightarrow\dfrac{3}{10}x-\dfrac{7}{3}=-42\\ \Rightarrow\dfrac{3}{10}x=-42+\dfrac{7}{3}\\ \Rightarrow\dfrac{3}{10}x=-\dfrac{119}{3}\\ \Rightarrow x=\dfrac{-119}{3}:\dfrac{3}{10}\\ =-\dfrac{1190}{9}\)