Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
c) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(\Leftrightarrow\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)=\left(\frac{x-3}{2007}-1\right)+\left(\frac{x-4}{2006}-1\right)\)
\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
\(\Leftrightarrow x-2010=0\)
\(\Leftrightarrow x=0+2010\)
\(\Rightarrow x=2010\)
Vậy \(x=2010.\)
Mình chỉ làm câu c) thôi nhé.
Chúc bạn học tốt!
\(\left(\frac{12}{25}\right)^x=\left(\frac{5}{3}\right)^{-2}-\left(-\frac{3}{5}\right)^4\)
\(\left(\frac{12}{25}\right)^x=\frac{144}{625}\)
\(\left(\frac{12}{25}\right)^x=\left(\frac{12}{25}\right)^2\)
\(x=2\)
Chúc bạn học tốt ^^
a) \(5^x-\left(5^3\right)^2=625\)
\(\Leftrightarrow5^x-5^6=5^4\)
\(\Leftrightarrow x-6=4\)
\(\Leftrightarrow x=10\)
b) \(\left(\frac{12}{25}\right)^x=\left(\frac{5}{3}\right)^{-2}-\left(-\frac{3}{5}\right)^4\)