Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) |2x - 6| + |x + 2| = 8
1)Với \(x< -2\) ta được: -(2x - 6) + [-(x + 2)] = 8 => -2x + 6 - x - 2 = 8 => -3x = 8 + 2 -6 = 4 => x = \(\frac{-4}{3}\)(loại vì \(\frac{-4}{3}>-2\))
2)Với \(-2\le x< 3\)ta được: (2x - 6) + [-(x + 2)] => 2x - 6 - x - 2 = 8 => x = 8 + 6 +2 => x = 16 (loại vì 16 > 3)
3)Với \(x\ge3\) ta được: (2x - 6) + (x + 2) = 8 => 2x - 6 + x + 2 = 8 => 3x = 8 + 6 - 2 = 12 => x = 4(chọn)
Vậy x = 4
c) |2x - 1| + |2x - 5| = 4
1)Với \(x\le0,5\)ta được: -(2x - 1) + [-(2x - 5)] = 4 => -2x + 1 - 2x + 5 = 4 => -4x = 4 - 1 - 5 => -4x = -2 => x = \(0,5\)(loại)
2)Với \(0,5< x< 2,5\) ta được: 2x - 1 + [-(2x - 5)] = 4 => 2x -1 - 2x + 5 = 4 => 0x = 4 +1 -5 => 0x = 0 => x\(\in R\)
3)Với \(x\ge2,5\)ta được: 2x - 1 + 2x - 5 = 4 => 4x = 4 + 1 + 5 => 4x = 10 => x = \(2,5\) (chọn)
Vậy x = 0,5 hoặc x = 2,5
d) |x + 5| + |x + 3| = 9
1)Với \(x< -5\)ta được: -(x + 5) + [-(x + 3)] = 9 => -x - 5 - x - 3 = 9 => -2x = 9 + 5 + 3 => -2x = 17 => x = -8,5(chọn)
2)Với \(-5\le x< -3\) ta được: x + 5 + [-(x + 3)] = 9 => x + 5 -x - 3 = 9 => 0x = 9 - 5 + 3 => 0x = 7(vô lý)
3)Với \(x\le-3\)ta được: x + 5 + x + 3 = 9 => 2x = 9 - 5 - 3 => 2x = 1 => x = 0,5(chọn)
Vậy x = -8,5 hoặc x = 0,5
a) 7x - |2x - 4| = 3x + 12 => 7x - (2x - 4) = 3x + 12 khi (2x + 4)\(\ge\)0 => x\(\ge\)-0,5 hoặc 7x - [-(2x - 4)] = 3x + 12 khi (2x + 4) < 0 => x < -0,5
1)Với x \(\ge\)-0,5 thì 7x - (2x - 4) = 3x +12 => 7x - 2x + 4 = 3x + 12 => 7x -2x -3x = -4 +12 => 2x = 8 => x = 4(chọn vì 4 > -0,5)
2)Với x < -0,5 thì 7x - [-(2x - 4)] = 3x +12 => 7x + 2x - 4 = 3x + 12 => 7x +2x - 3x = 4 + 12 => 6x = 16 => x = \(\frac{8}{3}\)(loại vì \(\frac{8}{3}\)> -0,5 )
Vậy x = 4
BẠN TẢI PHOTOMATH VỀ MÁY. RỒI CHỤP HÌNH GỬI CHO NÓ GIẢI BÀI
a. lx+7l + ly-5l=0
=>|x+7|=0 và |y-5|=0
x+7=0 và y-5=0
x=-7 và y=5
b. l3-xl + ly+4l=0
=>|3-x|=0 và |y+4|=0
3-x=0 và y+4=0
x=3 và y=-4
a, |x - 5| = x - 5 ( đk : x >= 5 )
<=> x - 5 = ( x - 5 )^2
<=> x - 5 = x^2 - 10x + 25
<=> x^2 - 10x + 25 - x + 5 = 0
<=> x^2 - 11x + 30 = 0
<=> x^2 - 5x - 6x + 30 = 0
<=> ( x^2 - 5x) - ( 6x - 30) = 0
<=> x ( x- 5) - 6( x- 5 ) = 0
<=> ( x- 5).(x - 6) =0
<=> Th1 : x- 5 = 0 => x = 5
Th2 : x - 6 = 0 => x = 6
khó kinh
a)Ta có :
\(\left|x-5\right|\ge0\)
\(\Rightarrow5-x\ge0\)
Mà 5 > 0
\(\Rightarrow x\ge0\)
Nên |x - 5| = 5 - x
=> x - 5 = 5 - x
=> x + x = 5 + 5
=> 2x = 10
=> x = 5
b) Ta có :
\(\left|x+3\right|\ge0\)
\(\left|x+2\right|\ge0\)
\(\Rightarrow\left|x+3\right|+\left|x+2\right|\ge0\)
\(\Rightarrow x\ge0\)
Nên |x + 3| + |x + 2| = x
=> x + 3 + x + 2 = x
=> 2x + 5 = x
=> 2x - x = -5
=> x = -5
Đề phải là \(\left|x+5\right|+\left|y-4\right|+\left|z-2\right|=0\)
Vì trị tuyệt dối luôn lớn hơn hoặc bằng 0 mà tổng các trị tuyệt đối = 0 nên
\(x+5=0\Leftrightarrow x=-5\)
\(y-4=0\Leftrightarrow y=4\)
\(z-2=0\Leftrightarrow z=2\)
Vậy \(\left(x;y;z\right)=\left(-5;4;2\right)\)
|x-3|+|x+5|=8
Với |x-3|=x-3
Ta có x-3+|x+5|=8
TH1:x-3+x+5=8
<=> 2x+2=8
<=> 2x=6
<=> x=3
TH2: x-3-x-5=8
<=> 0x-8=8
<=> 0x=16
<=> x vô nghiệm
Với |x-3|=-(x-3)
Ta có -(x-3)+|x+5|=8
TH1: -x+3+x+5=8
<=> 0x+8=8
<=> 0x=0
<=> x vô hạn
TH2: -x+3-x-5=8
<=> -2x-2=8
<=> -2x=10
<=> x=-5
Vậy ....
Ta có: /X-3/+/X+5/=8 (1)
Ta có bảng:
X | -5 | 3 | |||
X+5 | - | 0 | + | / | + |
X-3 | - | / | - | 0 | + |
Xét: X<-5:Thay vào (1) ta được:
-X+5-X+3=8
=>-2X+8=8
=>X=0 (VL)
Xét: X=-5:Thay vào (1) ta được:
2+0=8
=>2=8 (VL)
Xét: 3>X>-5:Thay vào (1) ta được:
-x+3+X+5=8
=>8=8 (chọn)
Xét: X=3:Thay vào (1) ta được:
X+5+x-3
=>3+5+3-3=8
=>8=8
Xét: X>3:Thay vào (1) ta được:
X+5+X-3
=>2X+2=8
=>2X=6
=>X=3 (Chọn)
Vậy:3> hoặc =X>-5
Bài 2 :
a, \(\left|x-\frac{5}{3}\right|< \frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}< \frac{1}{3}\\x-\frac{5}{3}< -\frac{1}{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 2\\x< \frac{4}{3}\end{cases}}}\)
b, \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\orbr{\begin{cases}\frac{2}{5}< x-\frac{7}{5}< \frac{3}{5}\\\frac{2}{5}< -x+\frac{7}{5}< \frac{3}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{9}{5}< x< 2\\1>x>\frac{4}{5}\end{cases}}\)
\(a.\) Vì: \(\left|x+5\right|\ge0\) \(\forall x\)
\(\Rightarrow1000-\left|x+5\right|\le1000\) \(\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow1000-\left|x+5\right|=1000\)
\(\Leftrightarrow\left|x+5\right|=1000-1000\)
\(\Leftrightarrow\left|x+5\right|=0\)
\(\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=0-5\)
\(\Leftrightarrow x=-5\)
\(b.\) Vì: \(\left|x+5\right|\ge0\) \(\forall x\)
\(\Rightarrow\left|x+5\right|-1000\ge-1000\) \(\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left|x+5\right|-1000=-1000\)
\(\Leftrightarrow\left|x+5\right|=-1000+1000\)
\(\Leftrightarrow\left|x+5\right|=0\)
\(\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=0-5\)
\(\Leftrightarrow x=-5\)
a , | x + 5| = 0
x + 5 = 0
x = 0 - 5
x = - 5
Vậy x = - 5
b , | x - 1 | = 9
x - 1 = 9 hoặc x - 1 = -9
x = 9 + 1 x =-9 + 1
x = 10 x = -8
Vậy x = 10 hoặc x = -8
a)\(\left|x+5\right|\)=\(0\)
\(x+5=0\)
\(x=0-5\)
\(x=-5\)
b)\(\left|x-1\right|\)=\(9\)
\(x-1=9\)\(hoặc\) \(x-1=-9\)
\(x=9+1\) / \(x=-9+1\)
\(x=10\) / \(x=-8\)
vậy x=10 hoặc x=-8