K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2022

1: =>|1/4x^2+1/45|=1/20

=>1/4x^2+1/45=1/20 hoặc 1/4x^2+1/45=-1/20

=>1/4x^2=1/36

=>x^2=1/36:1/4=1/9

=>x=1/3 hoặc x=-1/3

2: =(x^2-3)(x^2-2x)

=x(x-2)(x^2-3)

11 tháng 9 2017

\(a,\left(2-x\right)\left(\dfrac{4}{5}-x\right)< 0\)

=>Trong 2 số phải có 1 số âm và 1 số dương

\(2-x>\dfrac{4}{5}-x\)

=>\(\dfrac{4}{5}< x< 2\)

Vậy...

a: \(\Leftrightarrow\left(x-1\right)^2=81\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)

24 tháng 7 2018

a. \(\dfrac{1}{3}.\left(x-1\right)+\dfrac{2}{5}.\left(x+1\right)=0\)

=> \(\dfrac{1}{3}x-\dfrac{1}{3}+\dfrac{2}{5}x+\dfrac{2}{5}=0\)

=> \(\dfrac{1}{3}x+\dfrac{2}{5}x=0+\dfrac{1}{3}-\dfrac{2}{5}\)

=> \(\dfrac{11}{15}x=\dfrac{-1}{15}\)

=> \(x=\dfrac{-1}{11}\)

24 tháng 7 2018

Đây toán 8 mà? :v

a,\(\dfrac{1}{5}x\left(x-1\right)+\dfrac{2}{5}x\left(x+1\right)=0\)

\(\Leftrightarrow5x\left(x-1\right)+6x\left(x+1\right)=0\)

\(\Leftrightarrow\left[5\left(x-1\right)+6x\left(x+1\right)\right]x=0\)

\(\Leftrightarrow\left(5x-5+6x+6\right)x=0\)

\(\Leftrightarrow\left(11+1\right)x=0\)

\(\Leftrightarrow11x+1=0;x=0\)

\(\Leftrightarrow x=-\dfrac{1}{11};x=0\)

Vậy....

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

PT \(\Leftrightarrow \frac{(x+4)-(x+2)}{(x+2)(x+4)}+\frac{(x+8)-(x+4)}{(x+4)(x+8)}+\frac{(x+14)-(x+8)}{(x+8)(x+14)}=\frac{x}{(x+2)(x+14)}\)

\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)

\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)

\(\Leftrightarrow \frac{12}{(x+2)(x+14)}=\frac{x}{(x+2)(x+14)}\)

\(\Rightarrow x=12\) (thỏa mãn)

Vậy......

20 tháng 8 2017

a) ta có : \(\left(x-\dfrac{1}{3}\right).\left(x+\dfrac{2}{3}\right)>0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x>\dfrac{-2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x< \dfrac{-2}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{3}\\x< \dfrac{-2}{3}\end{matrix}\right.\) vậy \(x>\dfrac{1}{3}\) hoặc \(x< \dfrac{-2}{3}\)

b) \(\left(x+\dfrac{3}{5}\right).\left(x+1\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\dfrac{3}{5}>0\\x+1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\\x+1>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{-3}{5}\\x< -1\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{-3}{5}\\x>-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\-1< x< \dfrac{-3}{5}\end{matrix}\right.\) vậy \(-1< x< \dfrac{-3}{5}\)

20 tháng 8 2017

\(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{3}\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\Rightarrow x>\dfrac{1}{3}\\x+\dfrac{2}{3}>0\Rightarrow x>-\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\Rightarrow x< \dfrac{1}{3}\\x+\dfrac{2}{3}< 0\Rightarrow x< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x>-\dfrac{2}{3}\) hoặc \(x< \dfrac{1}{3}\)

\(\left(x+\dfrac{3}{5}\right)\left(x+1\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\Rightarrow x< -\dfrac{3}{5}\\x+1>0\Rightarrow x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x+\dfrac{3}{5}>0\Rightarrow x>-\dfrac{3}{5}\\x+1< 0\Rightarrow x< -1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1< x< -\dfrac{3}{5}\)

5 tháng 8 2018

Ta có:

\(B=\dfrac{\left(\dfrac{2}{3}\right)^3.\left(-\dfrac{3}{4}\right)^2.\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2.\left(-\dfrac{5}{12}\right)^3}=\dfrac{\dfrac{8}{27}.\dfrac{9}{16}.\left(-1\right)}{\dfrac{4}{25}.\left(-\dfrac{125}{1728}\right)}\\ =\dfrac{-\dfrac{1}{6}}{-\dfrac{5}{432}}=\dfrac{72}{5}\)

Vậy B = \(\dfrac{72}{5}\)

a: \(\Leftrightarrow7^x\cdot49+7^x\cdot\dfrac{2}{7}=345\)

\(\Leftrightarrow7^x=7\)

hay x=1

c: \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\)

\(\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-1}=\left(-\dfrac{1}{6}\right)^2\)

=>x-1=2

hay x=3

d: \(\dfrac{25}{5^x}=\dfrac{1}{125}\)

\(\Leftrightarrow5^x=5^2\cdot5^3=5^5\)

hay x=5

1: \(A=\dfrac{-25}{27}-\dfrac{31}{42}+\dfrac{7}{27}+\dfrac{3}{42}=\dfrac{-2}{3}-\dfrac{2}{3}=\dfrac{-4}{3}\)

2: \(B=\dfrac{10.3-\left(9.5-4.5\right)\cdot2}{1.2-1.5}=\dfrac{10.3-10}{-0.3}=-1\)

c: \(=\dfrac{3}{49}\left(\dfrac{19}{2}-\dfrac{5}{2}\right)-\left(\dfrac{1}{20}-\dfrac{5}{20}\right)^2\cdot\left(\dfrac{-7}{14}-\dfrac{193}{14}\right)\)

\(=\dfrac{3}{49}\cdot7-\dfrac{1}{25}\cdot\dfrac{-200}{14}\)

\(=\dfrac{3}{7}+\dfrac{8}{14}=1\)