Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 11:
=>4,6x=6,21
=>x=1,35
12: \(A=-\left(1.4-x\right)^2-1.4< =-1.4\)
=>x=-1,4
Câu 9:
\(\Leftrightarrow\dfrac{10a+b}{100c+90+d}=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+...+\dfrac{1}{92}-\dfrac{1}{97}=\dfrac{1}{2}-\dfrac{1}{97}=\dfrac{95}{194}\)
=>a=9; b=5; c=1; d=4
=>a+b+c+d=9+5+1+4=19
a) \(\frac{3}{4}+\frac{1}{4}:x=-3\)
\(\frac{1}{4}:x=-3-\frac{3}{4}\)
\(\frac{1}{4}:x=\frac{-15}{4}\)
\(x=\frac{1}{4}:\frac{-15}{4}\)
\(x=\frac{-1}{15}\)
b) \(x-\frac{1}{2}=2,5-x\)
\(x+x=2,5+\frac{1}{2}\)
\(2x=3\)
\(x=\frac{3}{2}\)
c) \(\left(x+\frac{1}{10}\right)+\left(x+\frac{1}{11}\right)=0\)
\(2x+\frac{21}{110}=0\)
\(2x=\frac{-21}{110}\)
\(x=\frac{-21}{110}:2\)
\(x=\frac{-21}{220}\)
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\) và \(x-3y=20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{3y}{9}=\dfrac{z}{2}=\dfrac{x-3y}{5-9}=\dfrac{20}{-4}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-5< =>x=-25\\\dfrac{y}{3}=-5< =>y=-15\\\dfrac{z}{2}=-5< =>z=-10\end{matrix}\right.\)
Vậy ....
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra: a = kb
c = kd
Do đó: \(\frac{a\cdot c}{b\cdot d}=\frac{kb\cdot kd}{b\cdot d}=\frac{k^2\cdot\left(b\cdot d\right)}{b\cdot d}=k^{2\left(1\right)}\)
\(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(kb\right)^2-\left(kd\right)^2}{b^2-d^2}=\frac{k^2b^2-k^2d^2}{b^2-d^2}=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2^{\left(2\right)}\)
Từ (1) và (2) suy ra \(\frac{a\cdot c}{b\cdot d}=\frac{a^2-c^2}{b^2-d^2}\left(đpcm\right)\)
sao lai co bai nay chu