K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

\(a,x^2-2x=24\)

\(x^2-2x-24=0\)

\(x^2-2x+1-25=0\)

\(\left(x-1\right)^2=5^2=\left(-5\right)^2\)

\(x-1=5\)                     hoặc                           \(x-1=-5\)

\(\Rightarrow\hept{\begin{cases}x=6\\x=-4\end{cases}}\)

\(b,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(4x^2-4x+1+x^2+6x+9-5x^2+245=0\)

\(2x+255=0\)

\(2x=-255\)

\(x=-\frac{255}{2}\)

11 tháng 7 2018

a/ \(x^2-2x=24\)

<=> \(x^2-2x+1-1=24\)

<=> \(\left(x-1\right)^2=25\)

<=> \(\orbr{\begin{cases}x-1=25\\x-1=-25\end{cases}}\)<=> \(\orbr{\begin{cases}x=26\\x=-24\end{cases}}\)

b/ \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

<=> \(4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

<=> \(4x^2-4x+1+x^2+6x+9-5x^2+245=0\)

<=> \(2x+255=0\)

<=> \(2x=-255\)

<=> \(x=-\frac{255}{2}\)

a: 3(x+7)-2x+5>0

=>3x+21-2x+5>0

=>x+26>0

=>x>-26

Sửa đề: \(\dfrac{x+2}{18}-\dfrac{x+3}{8}< \dfrac{x-1}{9}-\dfrac{x-4}{24}\)

=>\(\dfrac{4\left(x+2\right)}{72}-\dfrac{9\left(x+3\right)}{72}< \dfrac{8\left(x-1\right)}{72}< \dfrac{3\left(x-4\right)}{72}\)

=>\(4\left(x+2\right)-9\left(x+3\right)< 8\left(x-1\right)-3\left(x-4\right)\)

=>\(4x+8-9x-27< 8x-8-3x+12\)

=>-5x-19<5x+4

=>-10x<23

=>\(x>-\dfrac{23}{10}\)

b: \(3x+2+\left|x+5\right|=0\left(1\right)\)

TH1: x>=-5

(1) trở thành: 3x+2+x+5=0

=>4x+7=0

=>\(x=-\dfrac{7}{4}\left(nhận\right)\)

TH2: x<-5

=>x+5<0

=>|x+5|=-x-5

Phương trình (1) sẽ trở thành:

\(3x+2-x-5=0\)

=>2x-3=0

=>2x=3

=>\(x=\dfrac{3}{2}\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

9 tháng 7 2017

b/ x2-2x=24

=> x2-2x-24=0

=> (x-6)(x+4)=0

=>x=6 hoặc x =-4

9 tháng 7 2017

a/ (x-3)2 - 4 = 0

=> (x-3-2)(x-3+2)=0

=> (x-5)(x-1)=0

=> x = 5 hoặc x=1

11 tháng 9 2019

a) x = 1; x = - 1 3                 b) x = 2.

c) x = 3; x = -2.                 d) x = -3; x = 0; x = 2.

18 tháng 7 2019

a) (x - 1)3 - x(x - 2)- (x - 2) = 0

<=> x3 - 2x2 + x - x2 + 2x - 1 - x3 + 4x2 - 4x - x + 2 = 0

<=> x2 - 2x + 1 = 0

<=> x2 - 2.x.1 + 12 = 0

<=> (x - 1)2 = 0

        x - 1 = 0

        x = 0 + 1

        x = 1

=> x = 1

18 tháng 7 2019

a)Ta có : \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)

\(=>\left(x-1\right)^3-\left(x^2-2x\right)\left(x-2\right)-\left(x-2\right)=0\)

\(=>\left(x-1\right)^3-\left(x-2\right)\left(x^2-2x+1\right)=0\)

\(=>\left(x-1\right)^3-\left(x-2\right)\left(x-1\right)^2=0\)

\(=>\left(x-1\right)^2\left(x-1-x+2\right)=0\)

\(=>\left(x-1\right)^2=0=>x-1=0=>x=1\)

Vậy x=1

b)(2x+5)(2x-7)-(4x+3)2=16

\(=>4x^2-4x-35-16x^2-24x-9-16=0\)

\(=>-\left(12x^2+28x+60\right)=0\)

\(=>12\left(x^2+\frac{7}{3}x+\frac{5}{3}\right)=0\)

\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)

Lại có \(\left(x+\frac{7}{6}\right)^2\ge0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}\ge\frac{11}{36}>0\)

Vậy ko có giá trị nào của x thỏa mãn đề bài

\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)

14 tháng 11 2017

1) Tìm x và y biết

a) (2x+1)2 + y2 = 0

Ta có : \(\left(2x+1\right)^2\ge0;y^2\ge0\)

\(\Rightarrow\left(2x+1\right)^2+y^2\ge0\)

Để \(\left(2x+1\right)^2+y^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\y^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=0\end{matrix}\right.\)

b) x2 + 2x + 1 + (y-1)2 = 0

\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2=0\)

Lập luận tương tự câu a ,ta có :

\(\left(x+1\right)^2+\left(y-1\right)^2\ge0\)

\(\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

c) x2 - 2x + y2 + 4y + 5 = 0

\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

Lập luận tương tự 2 câu trên

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

16 tháng 11 2021

a: \(x\in\left\{0;25\right\}\)

c: \(x\in\left\{0;5\right\}\)

22 tháng 8 2021

a, \(\left(x+2\right)\left(x+4\right)-x^2=24\\ \Rightarrow x^2+6x+8-x^2=24\\ \Rightarrow6x+8=24\\ \Rightarrow6x=16\\ \Rightarrow x=\dfrac{8}{3}\)

b, \(\left(x+5\right)\left(x-5\right)=x^2+x\)

\(\Rightarrow x^2+x-\left(x+5\right)\left(x-5\right)=0\)

\(\Rightarrow x^2+x-x^2+25=0\\ \Rightarrow x+25=0\\ \Rightarrow x=-25\)

22 tháng 8 2021

\(a,< =>x^2+4x+2x+8-x^2=24< =>6x+8=24< =>x=\dfrac{24-8}{6}=\dfrac{8}{3}\)

b,\(< =>x^2-25-x^2-x=0< =>-25-x=0< =>x=-25\)

c,\(< =>4x^2-9-4x^2+4x=0< =>4x-9=0< =>x=\dfrac{9}{4}\)

d,\(< =>x^3+2^3=9< =>x^3=1=>x=1\)