Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 3(x+7)-2x+5>0
=>3x+21-2x+5>0
=>x+26>0
=>x>-26
Sửa đề: \(\dfrac{x+2}{18}-\dfrac{x+3}{8}< \dfrac{x-1}{9}-\dfrac{x-4}{24}\)
=>\(\dfrac{4\left(x+2\right)}{72}-\dfrac{9\left(x+3\right)}{72}< \dfrac{8\left(x-1\right)}{72}< \dfrac{3\left(x-4\right)}{72}\)
=>\(4\left(x+2\right)-9\left(x+3\right)< 8\left(x-1\right)-3\left(x-4\right)\)
=>\(4x+8-9x-27< 8x-8-3x+12\)
=>-5x-19<5x+4
=>-10x<23
=>\(x>-\dfrac{23}{10}\)
b: \(3x+2+\left|x+5\right|=0\left(1\right)\)
TH1: x>=-5
(1) trở thành: 3x+2+x+5=0
=>4x+7=0
=>\(x=-\dfrac{7}{4}\left(nhận\right)\)
TH2: x<-5
=>x+5<0
=>|x+5|=-x-5
Phương trình (1) sẽ trở thành:
\(3x+2-x-5=0\)
=>2x-3=0
=>2x=3
=>\(x=\dfrac{3}{2}\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a/ (x-3)2 - 4 = 0
=> (x-3-2)(x-3+2)=0
=> (x-5)(x-1)=0
=> x = 5 hoặc x=1
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
a) (x - 1)3 - x(x - 2)2 - (x - 2) = 0
<=> x3 - 2x2 + x - x2 + 2x - 1 - x3 + 4x2 - 4x - x + 2 = 0
<=> x2 - 2x + 1 = 0
<=> x2 - 2.x.1 + 12 = 0
<=> (x - 1)2 = 0
x - 1 = 0
x = 0 + 1
x = 1
=> x = 1
a)Ta có : \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)
\(=>\left(x-1\right)^3-\left(x^2-2x\right)\left(x-2\right)-\left(x-2\right)=0\)
\(=>\left(x-1\right)^3-\left(x-2\right)\left(x^2-2x+1\right)=0\)
\(=>\left(x-1\right)^3-\left(x-2\right)\left(x-1\right)^2=0\)
\(=>\left(x-1\right)^2\left(x-1-x+2\right)=0\)
\(=>\left(x-1\right)^2=0=>x-1=0=>x=1\)
Vậy x=1
b)(2x+5)(2x-7)-(4x+3)2=16
\(=>4x^2-4x-35-16x^2-24x-9-16=0\)
\(=>-\left(12x^2+28x+60\right)=0\)
\(=>12\left(x^2+\frac{7}{3}x+\frac{5}{3}\right)=0\)
\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)
Lại có \(\left(x+\frac{7}{6}\right)^2\ge0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}\ge\frac{11}{36}>0\)
Vậy ko có giá trị nào của x thỏa mãn đề bài
\(=>x^2+\frac{7}{3}x+\frac{49}{36}+\frac{11}{36}=0=>\left(x+\frac{7}{6}\right)^2+\frac{11}{36}=0\)
1) Tìm x và y biết
a) (2x+1)2 + y2 = 0
Ta có : \(\left(2x+1\right)^2\ge0;y^2\ge0\)
\(\Rightarrow\left(2x+1\right)^2+y^2\ge0\)
Để \(\left(2x+1\right)^2+y^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=0\end{matrix}\right.\)
b) x2 + 2x + 1 + (y-1)2 = 0
\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2=0\)
Lập luận tương tự câu a ,ta có :
\(\left(x+1\right)^2+\left(y-1\right)^2\ge0\)
\(\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
c) x2 - 2x + y2 + 4y + 5 = 0
\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
Lập luận tương tự 2 câu trên
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
a, \(\left(x+2\right)\left(x+4\right)-x^2=24\\ \Rightarrow x^2+6x+8-x^2=24\\ \Rightarrow6x+8=24\\ \Rightarrow6x=16\\ \Rightarrow x=\dfrac{8}{3}\)
b, \(\left(x+5\right)\left(x-5\right)=x^2+x\)
\(\Rightarrow x^2+x-\left(x+5\right)\left(x-5\right)=0\)
\(\Rightarrow x^2+x-x^2+25=0\\ \Rightarrow x+25=0\\ \Rightarrow x=-25\)
\(a,< =>x^2+4x+2x+8-x^2=24< =>6x+8=24< =>x=\dfrac{24-8}{6}=\dfrac{8}{3}\)
b,\(< =>x^2-25-x^2-x=0< =>-25-x=0< =>x=-25\)
c,\(< =>4x^2-9-4x^2+4x=0< =>4x-9=0< =>x=\dfrac{9}{4}\)
d,\(< =>x^3+2^3=9< =>x^3=1=>x=1\)
\(a,x^2-2x=24\)
\(x^2-2x-24=0\)
\(x^2-2x+1-25=0\)
\(\left(x-1\right)^2=5^2=\left(-5\right)^2\)
\(x-1=5\) hoặc \(x-1=-5\)
\(\Rightarrow\hept{\begin{cases}x=6\\x=-4\end{cases}}\)
\(b,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(2x+255=0\)
\(2x=-255\)
\(x=-\frac{255}{2}\)
a/ \(x^2-2x=24\)
<=> \(x^2-2x+1-1=24\)
<=> \(\left(x-1\right)^2=25\)
<=> \(\orbr{\begin{cases}x-1=25\\x-1=-25\end{cases}}\)<=> \(\orbr{\begin{cases}x=26\\x=-24\end{cases}}\)
b/ \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
<=> \(4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
<=> \(4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
<=> \(2x+255=0\)
<=> \(2x=-255\)
<=> \(x=-\frac{255}{2}\)