Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x-3\right)\left(x-2\right)< 0\)
Vì \(x\in R\) nên \(x-3< x-2\) nên:
\(\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)
Vậy....................
b, Giống câu a.
c, \(\left(x+3\right)\left(x-4\right)>0\)
\(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x>4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x< 4\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>4\\x< -3\end{matrix}\right.\)
Vậy.............
d, Giống câu c
e, Dạng giống câu a
Chúc bạn học tốt!!!
a)\(\left(x-3\right)\left(x-2\right)< 0\)
Vì \(\left(x-3\right)\left(x-2\right)< 0\) nên phải có 1 số âm và 1 số dương
Mà \(x-3< x-2\)
Nên ta có:
\(x-3< 0\)=>\(x< 3\)
\(x-2>0\)=>\(x>2\)
Do đó:\(2< x< 3\)
Vậy \(2< x< 3\)
Các câu sau tương tự
a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
b. \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)
c, \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)
\(\Rightarrow5x=7\)
\(\Rightarrow x=\frac{7}{5}\)
e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }
x - 2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy....
a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)
Vậy : ....
b) \(\left(x^2+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)
c) \(2x^2-\frac{1}{3}x=0\)
\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)
Vậy :...
Bài 1 tôi làm 1 phần hướng dẫn thôi nhé các phần còn lại bạn nhìn theo mà làm . Nếu bí thì nhắn tin cho tôi để tôi làm nốt
a) \(|3x-1|-|2x+3|=0\left(1\right)\)
Ta có: \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)
\(2x+3=0\Leftrightarrow x=\frac{-3}{2}\)
Lập bảng xét dấu :
+) Với \(x< \frac{-3}{2}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3< 0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=-2x-3\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(1-3x\right)-\left(-2x-3\right)=0\)
\(1-3x+2x+3=0\)
\(-x+4=0\)
\(x=4\)( chọn )
+) Với \(\frac{-3}{2}\le x\le\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1< 0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=1-3x\\|2x+3|=2x+3\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(1-3x\right)-\left(2x+3\right)=0\)
\(1-3x-2x-3=0\)
\(-5x-2=0\)
\(x=\frac{-2}{5}\)( chọn )
+) Với \(x>\frac{1}{3}\Rightarrow\hept{\begin{cases}3x-1>0\\2x+3>0\end{cases}\Rightarrow\hept{\begin{cases}|3x-1|=3x-1\\|2x+3|=2x+3\end{cases}\left(4\right)}}\)
Thay (4) vào (1) ta được :
\(\left(3x-1\right)-\left(2x+3\right)=0\)
\(3x-1-2x-3=0\)
\(x-4=0\)
\(x=4\)( chọn )
Vậy \(x\in\left\{4;\frac{-2}{5}\right\}\)
Bài 2:
a) Ta có: \(|2x+1|\ge0\forall x\)
\(\Rightarrow|2x+1|-7\ge0-7\forall x\)
Hay \(A\ge-7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Min A=-7 \(\Leftrightarrow x=\frac{-1}{2}\)
b) ko biết
c) Ta có: \(|1-x|+|x-2|\ge|1-x+x-2|\)
Hay \(C\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(1-x\right).\left(x-2\right)\ge0\)
( giải các th nếu ko giải đc thì nhắn tin riêng nhé :)) )
a) \(\frac{3}{4}-\left(\frac{1}{2}:x+\frac{1}{2}\right)=\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{3}{4}-\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{15}{20}-\frac{12}{20}\)
\(\Leftrightarrow\frac{1}{2}:x+\frac{1}{2}=\frac{13}{20}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{13}{20}-\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{13}{20}-\frac{10}{20}\)
\(\Leftrightarrow\frac{1}{2}:x=\frac{3}{20}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{3}{20}\)
\(\Leftrightarrow x=\frac{1}{2}.\frac{20}{3}=\frac{10}{3}\)
Vậy: \(x=\frac{10}{3}\)
b) \(3x.\left(\frac{1}{2}.x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\\frac{1}{2}x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{2}x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1:\frac{1}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
Vậy: \(x\in\left\{0;2\right\}\)
c) \(\left(4-x\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\2x=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=\frac{3}{2}\end{cases}}}\)
Vậy: \(x\in\left\{4;\frac{3}{2}\right\}\)
d) \(\frac{4}{-3}=\frac{-12}{x}\)
\(\Leftrightarrow4x=\left(-12\right).\left(-3\right)\)
\(\Leftrightarrow4x=36\)
\(\Leftrightarrow x=9\)
Vậy: \(x=9\)
e) \(\frac{4x}{-3}=\frac{12}{-x}\)
\(\Leftrightarrow4x.\left(-x\right)=12.\left(-3\right)\)
\(\Leftrightarrow-4x^2=-36\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy: \(x\in\left\{3;-3\right\}\)
a)
\(\left(x-2\right)\left(x+7\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2\ge0\\x+7\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2\le0\\x+7\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2\le x\le-7\left(vô-lý\right)\\-7\le x\le2\end{matrix}\right.\)
=> -7 ≤ x ≤ 2
b) Em làm tương tự câu a nhé
c) \(\left(3x+1\right)\left(x-4\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x+1< 0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x+1>0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}>x>4\left(vô-lý\right)\\-\dfrac{1}{3}< x< 4\end{matrix}\right.\)
d) \(\left(x-1\right)\left(2x-1\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>1\\x< \dfrac{1}{2}\end{matrix}\right.\)
Mk lm mẫu câu A, mấy câu sau tự lm nha, có j thì cmt bên dưới hỏi mk
(x+3)(x-2) < 0
=> (x+3) và (x-2) trái dấu
TH1: x+3 > 0 và x-2 < 0 => x > -3 và x < 2 => -3 < x <2
TH2: x+3 < 0 và x-2 > 0 => x <-3 và x > 2 => 2 < x <-3 (vô lí)
Vậy -3 < x <2
Lưu ý là ở đây có vô số x nên k liệt kê ra hết đc