Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi biểu thức là A
\(A=\dfrac{2x}{12}+\dfrac{2x}{20}+\dfrac{2x}{30}+....+\dfrac{2x}{156}=\dfrac{200}{39}\)
Ta có công thức :
\(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\)
Áp dụng công thức trên, ta có :
\(A=\dfrac{2x}{3.4}+\dfrac{2x}{4.5}+\dfrac{2x}{5.6}+....+\dfrac{2x}{12.13}\)
\(A=2x.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{12}-\dfrac{1}{13}\right)\)
\(A=2x.\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)
\(A=2x.\left(\dfrac{10}{39}\right)=\dfrac{200}{39}\)
\(A=2x=\dfrac{200}{39}:\dfrac{10}{39}\)
\(2x=20\)
\(\Rightarrow x=10\)
mink nghĩ vậy bạn ạ
\(\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{18}\)
\(\Leftrightarrow x+1=18\)
\(\Leftrightarrow x=17\)
a)
\(\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{x+3}=\dfrac{9}{38}\\\\ \dfrac{1}{x+3}=\dfrac{1}{4}-\dfrac{9}{38}\\ \dfrac{1}{x+3}=\dfrac{1}{76}\\ x+3=76\\ x=73.\)
b)
\(\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ \dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ 2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ 2.\left(\dfrac{1}{6}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ \dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}=\dfrac{1}{18}\\ x+1=18\\ x=17.\)
A =\(2.\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+......+\dfrac{1}{156}\right)\)
A =\(2.\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+..........+\dfrac{1}{12.13}\right)\)
A =2.\(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)
A=\(2.\dfrac{10}{39}=\dfrac{20}{39}\)
a: =>4/x=y/-21=4/7
=>x=7; y=-12
b: =>xy=63
mà x>y
nên \(\left(x,y\right)\in\left\{\left(9;7\right);\left(21;3\right);\left(63;1\right);\left(-7;-9\right);\left(-3;-21\right);\left(-1;-63\right)\right\}\)
c: =>xy=45
mà x<y<0
nên \(\left(x,y\right)\in\left\{\left(-45;-1\right);\left(-15;-3\right);\left(-9;-5\right)\right\}\)
Tìm số nguyên x, biết:
a) \(\dfrac{-28}{35}=\dfrac{16}{x};\) b) \(\dfrac{x+7}{15}=\dfrac{-24}{36}.\)
\(a.\)
\(\dfrac{-28}{35}=\dfrac{16}{x}\)
\(\Rightarrow x=\dfrac{35\cdot16}{-28}=\dfrac{5\cdot7\cdot4\cdot4}{-7\cdot4}=-20\)
\(b.\)
\(\dfrac{x+7}{15}=\dfrac{-24}{36}\)
\(\Rightarrow x+7=\dfrac{15\cdot-24}{36}=\dfrac{5\cdot3\cdot-12\cdot2}{12\cdot3}=-10\)
\(\Leftrightarrow x=-17\)
Câu 2:
\(\Leftrightarrow x\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{78}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow2x\left(\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{156}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow x\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{12}-\dfrac{1}{13}\right)=\dfrac{110}{39}\)
\(\Leftrightarrow x\cdot\dfrac{10}{39}=\dfrac{110}{39}\)
=>x=11
\(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+........+\dfrac{x}{78}=\dfrac{220}{39}\)
\(\Leftrightarrow\dfrac{2x}{12}+\dfrac{2x}{20}+........+\dfrac{2x}{156}=\dfrac{220}{39}\)
\(\Leftrightarrow2x\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+..........+\dfrac{1}{12.13}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow2x\left(\dfrac{1}{3}-\dfrac{1}{13}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow2x.\dfrac{10}{39}=\dfrac{220}{39}\)
\(\Leftrightarrow x.\dfrac{20}{39}=\dfrac{220}{39}\)
\(\Leftrightarrow x=11\)
Vậy ...