Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2016}\)+ \(\frac{3}{2016}\)+ \(\frac{5}{2016}\)+..........+ \(\frac{2015}{2016}\)= \(\frac{1+3+5+....+2015}{2016}\)
=\(\frac{1016064}{2016}\)= \(504\)
\(\frac{1}{2016}\)\(+\frac{3}{2016}\)\(+\frac{5}{2016}\)\(+...+\frac{2015}{2016}\)
\(=\frac{1+3+5+...+2015}{2016}\)
\(=\frac{1016064}{2016}\)
\(=504\)
\(0< x< \frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}\)
Mà \(x\in N\Rightarrow x=1\)
Ta có:
0<x<1/2+1/3+1/4
=> 0<x<13/12
=>0<x<1.083333....(1)
Mà x là số tự nhiên (2)
Từ (1) và (2) ta có x thuộc tập hợp rỗng
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2016}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{2015}{2016}\)
\(=\frac{1.2.3.4...2015}{2.3.4.5...2016}\)
\(=\frac{1}{2016}\)
\(x+\frac{2}{5}=1-\frac{1}{6}\)
\(x+\frac{2}{5}=\frac{5}{6}\)
\(x=\frac{5}{6}-\frac{2}{5}=\frac{13}{30}\)
\(x=\frac{13}{30}\)
bài 1
Ta có : 2016/2017<1
2017/2018<1
Nên 2016/2017=2017/2018
Bài 1 :
a) Ta có : \(\frac{2016}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=1-\frac{1}{2018}\)
Vì \(-\frac{1}{2017}< -\frac{1}{2018}\)nên \(\frac{2016}{2017}< \frac{2017}{2018}\)
b) Ta có : \(\frac{2018}{2017}=1+\frac{1}{2017}\)
\(\frac{2017}{2016}=1+\frac{1}{2016}\)
Vì \(\frac{1}{2017}< \frac{1}{2016}\) nên \(\frac{2018}{2017}< \frac{2017}{2016}\)
Câu 2 :
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{101.103}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{101.103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{2}.\frac{102}{103}=\frac{51}{103}\)
x = 0 ???
Đây là toán lớp 4?!