Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)
\(\sqrt{25}.\left(0,4-1\dfrac{1}{2}\right):\left[\left(-2\right)^3:\dfrac{8}{11}\right]\)
\(=5.\left(\dfrac{2}{5}-\dfrac{3}{2}\right):\left(-8:\dfrac{8}{11}\right)\)
\(=5.\left(-\dfrac{11}{10}\right):\left(-11\right)\)
\(=\dfrac{-11}{2}:\left(-11\right)\)
\(=\dfrac{1}{2}\)
\(A=\dfrac{\sqrt{\dfrac{9}{4}-3^{-1}+2018^0}}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(-\dfrac{1}{2}\right)^2-\sqrt{\dfrac{4}{9}}+0,4}{0,6-\dfrac{2}{3}.\left(-\dfrac{1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{9}{4}-\dfrac{1}{3}+1}}{\dfrac{1}{4}+\dfrac{5}{4}-\dfrac{13}{10}}-\dfrac{\dfrac{1}{4}-\dfrac{2}{3}+\dfrac{2}{5}}{\dfrac{3}{5}-\dfrac{2}{3}\left(-\dfrac{1}{4}-\dfrac{1}{2}\right)}\)
\(A=\dfrac{\sqrt{\dfrac{35}{12}}}{\dfrac{1}{5}}-\dfrac{-\dfrac{1}{60}}{\dfrac{11}{10}}\)
\(A=\dfrac{5\sqrt{105}}{6}+\dfrac{11}{66}\)
\(A=\dfrac{55\sqrt{105}}{66}+\dfrac{11}{66}\)
\(A=\dfrac{55\sqrt{105}+11}{66}\)
B = .................
Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0
\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)
\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)
Mình làm câu 1,2 trước, câu 3 sau
Câu 1:
\(\sqrt{x^2}=0\)
=> \(\left(\sqrt{x^2}\right)^2=0^2\)
\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Câu 2:
\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)
\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)
\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)
a) \(\left(-0,6\right)^6\cdot x=\left(\frac{-3}{5}\right)^8\)
\(x=\left(\frac{-3}{5}\right)^8:\left(\frac{-3}{5}\right)^6\)
\(x=\left(-\frac{3}{5}\right)^2=\frac{9}{25}\)
b) \(\left(0,5-x\right)^3=-8=\left(-2\right)^3\)
\(\Leftrightarrow0,5-x=-2\)
\(\Leftrightarrow x=2,5\)
Vậy,.................
Bài giải
\(\left|\sqrt{x+1}-0,5\right|-0,6=\sqrt{\left(-3\right)^2}+0,4\)
\(\left|\sqrt{x+1}-0,5\right|-0,6=3+0,4\)
\(\left|\sqrt{x+1}-0,5\right|-0,6=3,4\)
\(\left|\sqrt{x+1}-0,5\right|=3,4+0,6\)
\(\left|\sqrt{x+1}-0,5\right|=4\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x+1}-0,5=-4\\\sqrt{x+1}-0,5=4\end{cases}\Rightarrow}\orbr{\begin{cases}\sqrt{x+1}=-3,5\text{ ( loại ) }\\\sqrt{x+1}=4,5\end{cases}}\Rightarrow\text{ }x+1=20,25\text{ }\Rightarrow\text{ }x=19,25\)
\(\Rightarrow\text{ }x=19,25\)
Ta có: \(|\sqrt{x+1}-0,5|=4\)\(\left(ĐK:x\ge-1\right)\)
<=> \(\orbr{\begin{cases}\sqrt{x+1}-0,5=4\\\sqrt{x+1}-0,5=-4\end{cases}}\)
<=> \(\orbr{\begin{cases}x=19,25\\x\in\varnothing\end{cases}}\)