Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> |2x+3| = 5+2.|4-x| = 5+|8-2x|
=> 2x+3 = 5+8-2x hoặc 2x+3 = 5-8+2x
=> x = 5/2
Vậy x = 5/2
Tk mk nha
\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\) và \(x+2=y+3=z+4\)
\(\Rightarrow x-\frac{1}{2}=0\) hoặc \(y+\frac{1}{3}=0\) hoặc \(z-2=0\)
\(\Rightarrow x=\frac{1}{2}\) | \(y=-\frac{1}{3}\) | \(z=2\)
Khi \(x=\frac{1}{2}\) thì:
\(\frac{1}{2}+2=\frac{5}{2}\)
\(y=\frac{5}{2}-3=-\frac{1}{2}\)
\(z=\frac{5}{2}-4=\frac{-3}{2}\)
Khi \(y=\frac{-1}{3}\) thì:
\(\frac{-1}{3}+3=\frac{8}{3}\)
\(x=\frac{8}{3}-2=\frac{2}{3}\)
\(z=\frac{8}{3}-4=-\frac{4}{3}\)
Khi \(z=2\) thì:
\(2+4=6\)
\(x=6-2=4\)
\(y=6-3=3\)
Vậy (x,y,z) = \(\left(\frac{1}{2};-\frac{1}{2};-\frac{3}{2}\right)\) ; \(\left(\frac{2}{3};-\frac{1}{3};-\frac{4}{3}\right)\) ; \(\left(4;3;2\right)\)
\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)
\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{\left(x-1\right)-2.\left(y-2\right)+3.\left(z-3\right)}{2-2.3+3.4}\)
\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{8}\)
\(=\frac{14-6}{8}=1\)
suy ra: \(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow x=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)
ta có x/3 = y/4 => x2/9 = y2/16
theo tính chất dãy tỉ số bằng nhau ta có :
x2/9 = y2/ 16 = x2 + y2 / 9 + 16 = 56 / 25
hình như đề sai thì phải . x2 + y2 = 56 ???///
X2(x+2)+4(x+2)=0
=>(x2+4)(x+2)=0
=>x2+4=0 hoặc x+2=0
=>x2=-4 hoặc x=-2
Mà x2 phải ra kết quả là số dương
suy ra x=-2
\(x^2\left(x+2\right)+4\left(x+2\right)=0\)
\(\Rightarrow\left(x^2+4\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+4=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-4\\x=-2\end{cases}}}\)
mà \(x^2\ge0\Rightarrow x=-2\)
\(x-1\over2\)=\(y-2\over3\)=\(z-3\over4\)
=> \(x-1\over2\)=\(2.(y-2)\over2.3\)=\(3.(z-3)\over3.4\)
=> \(x-1\over2\)=\(2y-4\over6\)=\(3z-9\over12\)
\(Áp dụng tính chất của dãy tỉ số bằng nhau ta được:\)
\(x-1\over2\)=\(2y-4\over6\)=\(3z-9\over12\)=\(x-1-2y-4+3z-9\over2-6+12\)=\(1\)
Từ đề bài, ta có các trường hợp sau:
TH1: Cả 3 thừa số đều dương:
Khi đó biểu thức trở thành:
\(\left(x-2\right)+\left(x-3\right)+\left(x-4\right)=2\)
\(\Rightarrow\left(x+x+x\right)-\left(2+3+4\right)=2\)
\(\Rightarrow3x-9=2\)
\(\Rightarrow3x=11\)
\(\Rightarrow x=\frac{11}{3}\)
Do \(\frac{11}{3}-4=-\frac{1}{3}< 0\) ( mâu thuẫn với điều kiện các thừa số đều dương ) nên ta loại.