Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)
\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
PS: Điều kiện xác đinh bạn tự làm nhé
\(a,9x^2-6x-3=0\)
\(\Leftrightarrow9x^2-6x+1-4=0\)
\(\Leftrightarrow\left(3x-1\right)^2=4\)
\(\Rightarrow3x-1=\pm2\)
\(\hept{\begin{cases}3x-1=2\Rightarrow x=1\\3x-1=-2\Rightarrow x=\frac{-1}{3}\end{cases}}\)
Vậy \(x=1\) hoặc \(x=\frac{-1}{3}\)
\(b,x^3+9x^2+27x+19=0\)
\(\Leftrightarrow x^3+9x^2+27x+27-8=0\)
\(\Leftrightarrow\left(x+3\right)^3=8\)
\(\Rightarrow x+3=2\)
\(\Rightarrow x=-1\)
Vậy \(x=-1\)
\(c,x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=3\)
\(\Leftrightarrow x^3-25x-x^3-8=3\)
\(\Leftrightarrow-25x=11\)
\(\Leftrightarrow x=\frac{-11}{25}\)
Vậy \(x=\frac{-11}{25}\)
\(9x^2-6x-3=0\)
<=> \(\left(3x\right)^2-2.3x.1+1-4=0\)
<=> \(\left(3x-1\right)^2-2^2=0\)
<=> \(\left(3x-3\right)\left(3x+1\right)=0\)
<=> \(\hept{\begin{cases}3x-3=0\\3x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
\(x^3+9x^2+27x+19\) \(=0\)
<=>\(x^3+x^2+8x^2+8x+19x+19=0\)
<=> \(x^2\left(x+1\right)+8x\left(x+1\right)+19\left(x+1\right)=0\)
<=> \(\left(x^2+8x+19\right)\left(x+1\right)=0\)
mà \(x^2+8x+19>0\)
=> \(x+1=0\)
<=> \(x=-1\)
\(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
<=> \(x\left(x^2-25\right)-\left(x+2\right)\left(x-2\right)^2=3\)
<=> \(x^3-25x-\left(x^2-4\right)\left(x-2\right)=3\)
<=> \(x^3-25x-\left(x^3-2x^2-4x+8\right)=3\)
<=> \(x^3-25x-x^3+2x^2+4x-8=3\)
<=> \(2x^2-21x-8=3\)
<=> \(2x^2-21x-11=0\)
<=> \(2x^2-22x+x-11=0\)
<=> \(2x\left(x-11\right)+\left(x-11\right)=0\)
<=> \(\left(2x+1\right)\left(x-11\right)=0\)
<=> \(\hept{\begin{cases}2x+1=0\\x-11=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{-1}{2}\\x=11\end{cases}}\)
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
Bài 1:
a)-x^2+4x-5
=-(x2-4x+5)<0 với mọi x
=>-x^2+4x-5<0 với mọi x
b)x^4+3x^2+3
\(=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x
=>x^4+3x^2+3>0 với mọi x
c) bn xét từng th ra
Bài 2:
a)9x^2-6x-3=0
=>3(3x2-2x-1)=0
=>3x2-2x-1=0
=>3x2+x-3x-1=0
=>x(3x+1)-(3x+1)=0
=>(x-1)(3x+1)=0
b)x^3+9x^2+27x+19=0
=>(x+1)(x2+8x+19) (dùng pp nhẩm nghiệm rồi mò ra)
- Với x+1=0 =>x=-1
- Với x2+8x+19 =>vô nghiệm
c)x(x-5)(x+5)-(x+2)(x^2-2x+4)=3
=>x3-25x-x3-8=3
=>-25x-8=3
=>-25x=1
=>x=-11/25
(x+2)(x+3)-(x-2)(x+5)=0
=> x2+5x+6-x2-3x+10=0
=>2x+16=0
=>2x=-16
=>x=-8
1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)
2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)
3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)
4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)
\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)
5, em xem lại đề nhé
à lag tý @@
5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)
a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)
\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)
\(\Leftrightarrow-9x=18\)
hay x=-2
Vậy: S={-2}
b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)
\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)
\(\Leftrightarrow14x=7\)
hay \(x=\dfrac{1}{2}\)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)
\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)
\(\Leftrightarrow5.2x=-6.5\)
hay \(x=-\dfrac{5}{4}\)
Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)
d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)
\(\Leftrightarrow2x+16=6\)
\(\Leftrightarrow2x=-10\)
hay x=-5
Vậy: S={-5}
e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
Vậy: S={0}
Tìm x.
a) 9x^2 – 6x – 3 = 0
b) x^3 + 9x^2 + 27x + 19 = 0
c) x(x + 5)(x – 5) – (x + 2)(x^2 – 2x + 4) = 3
a) \(9x^2-6x-3=0\)
\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x^3+9x^2+27x+19=0\)
\(\Leftrightarrow x^2\left(x+1\right)+8x\left(x+1\right)+19\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+8x+19\right)=0\)
\(\Leftrightarrow x=-1\)( do \(x^2+8x+19=\left(x+4\right)^2+3>0\))
c) \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x\left(x^2-25\right)-x^3-8=3\)
\(\Leftrightarrow x^3-25x-x^3=8\Leftrightarrow-25x=11\Leftrightarrow x=-\dfrac{11}{25}\)