Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+3\right)^2-\left(x-7\right)\left(x-5\right)=10\)
\(\Rightarrow x^2+6x+9-x^2+12x-35=10\)
\(\Rightarrow18x=36\Rightarrow x=2\)
(x-1)2+(x+3)2-5(x+7)(x-7)=0
\(\Leftrightarrow x^2-2x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow x^2-2x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow-3x^2+4x+255=0\)
\(\Leftrightarrow-3\left(x^2-\frac{4}{3}x\right)+255=0\)
\(\Leftrightarrow-3\left(x^2-2.x.\frac{2}{3}+\frac{4}{9}\right)+3.\frac{4}{9}+255=0\)
\(\Leftrightarrow-3\left(x-\frac{2}{3}\right)^2+\frac{769}{3}\)
\(\Leftrightarrow-3\left(x-\frac{2}{3}\right)^2=-\frac{769}{3}\)
\(\Leftrightarrow\left(x-\frac{2}{3}\right)^2=\frac{769}{9}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=\sqrt{\frac{769}{9}}\\x-\frac{2}{3}=-\sqrt{\frac{769}{9}}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{769}{9}}+\frac{2}{3}=\frac{\sqrt{769}+2}{3}\\x=-\sqrt{\frac{769}{9}}+\frac{2}{3}=\frac{2-\sqrt{769}}{3}\end{cases}}\)
Vậy \(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{769}+2}{3}\\x=\frac{2-\sqrt{769}}{3}\end{cases}}\)
a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)
b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(=4x^2+1-4x+\left(x^2+9+6x\right)-5\left(x^2-7^2\right)=0\)
\(=4x^2+1-4x+x^2+9+6x-5x^2+245=0\)
\(=\left(4x^2+x^2-5x^2\right)-\left(4x-6x\right)+\left(1+9+245\right)=0\)
\(=2x+255=0\)
\(\Rightarrow2x=-255\)
\(x=-127,5\)
(2x-1)^2+(x+3)^2-5(x+7)(x-7)=0
=>4x2-4x+1+x2+6x+9+245-5x2=0
=>(4x2+x2-5x2)+(6x-4x)+(1+9+245)=0
=>2x+255=0
=>2x=-255 <=>x=-255/2
a) `4x(x-5)-(x-1)(x-3)=23`
`<=> 4x^2-20x-x^2+4x-3=23`
`<=>3x^2-16x-26=0`
`<=> x=(8+-\sqrt142)/3
*Nếu đề là: `4x(x-5)-(x-1)(4x-3)=23`
`<=> 4x^2-20x-4x^2+7x-3=23`
`<=>-13x=26`
`<=>x=-2`
b) `(x-5)(x-4)-(x+1)(x-2)=7`
`<=>x^2-9x+20-x^2+x+2=7`
`<=>-8x=-15`
`<=>x=15/8`
a)4×(x-5)-(x-1)×(4x-3)=5
=>4x-20-4x2+7x-3-5=0
=>-4x2+11x-28=0
=>-4(x2-\(\frac{11x}{4}\)+7)=0
=>\(-4\left(x-\frac{11}{8}\right)^2-\frac{327}{16}< 0\)
=>vô nghiệm
b) (3x-4)(x-2)=3x(x-9)-3
=>3x2-10x+8=3x2-27x-3
=>17x=-11
=>x=-11/17
c)(x-5)×(x-4)-(x+1)×(x-2)=7
=>x2-9x+20-x2+x+2=7
=>22-8x=7
=>-8x=-15
=>x=8/15
a: \(\left(x+5\right)^2-\left(x-5\right)^2-2x+1=0\)
=>\(x^2+10x+25-\left(x^2-10x+25\right)-2x+1=0\)
=>\(x^2+8x+26-x^2+10x-25=0\)
=>18x+1=0
=>\(x=-\dfrac{1}{18}\)
b: \(\left(2x-7\right)^2-\left(x+3\right)^2=3x^2+6\)
=>\(4x^2-28x+49-\left(x^2+6x+9\right)-3x^2-6=0\)
=>\(x^2-28x+43-x^2-6x-9=0\)
=>34-34x=0
=>34x=34
=>x=1
c: \(\left(3x+2\right)^2-9\left(x-5\right)\left(x+5\right)=225-5x\)
=>\(9x^2+12x+4-9\left(x^2-25\right)-225+5x=0\)
=>\(9x^2+17x+4-225-9x^2+225=0\)
=>17x+4=0
=>x=-4/17
`a) x(x + 5)(x – 5) – (x + 2)(x^2 – 2x + 4) = 3`
`<=>x(x^2-25)-(x^3-8)=3`
`<=>x^3-25x-x^3+8=3`
`<=>-25x=-5`
`<=>x=1/5`
`b) (x – 3)^3 – (x – 3)(x^2 + 3x + 9) + 9(x + 1)^2 = 15`
`<=>x^3-9x^2+27x-27-(x^3-27)+9(x^2+2x+1)=15`
`<=>-9x^2+27x+9x^2+18x+9=15`
`<=>45x+9=15`
`<=>45x=6`
`<=>x=6/45=2/15`
`c) (x+5)(x^2 –5x +25) – (x – 7) = x^3`
`<=>x^3-125-x+7=x^3`
`<=>x^3-x-118=x^3`
`<=>-x-118=0`
`<=>-x=118<=>x=-118`
`d) (x+2)(x^2 – 2x + 4) – x(x^2 + 2) = 4 `
`<=>x^3+8-x^3-2x=4`
`<=>8-2x=4`
`<=>2x=4<=>x=2`
\(\left(x+5\right)^2=\left(x+3\right).\left(x-7\right)\)
\(\Rightarrow x^2+10x+25=\left(x^2+4x-7x-21\right)\)
\(\Rightarrow x^2+10x+25=x^2-4x-21\)
\(\Rightarrow\left(x^2-x^2\right)+\left(10x+4x\right)=-21-25\)
\(\Rightarrow14x=-46\)
\(\Rightarrow x=\frac{-23}{7}\)