Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+5}{2012}+\frac{x+4}{2013}=\frac{x+3}{2014}+\frac{x+2}{2015}\)
\(\Leftrightarrow\frac{x+5}{2012}+1+\frac{x+4}{2013}+1=\frac{x+3}{2014}+1+\frac{x+2}{2015}+1\)
\(\frac{x+5+2012}{2012}+\frac{x+4+2013}{2013}=\frac{x+3+2014}{2014}+\frac{x+2+2015}{2015}\)
\(\frac{x+2017}{2012}+\frac{x+2017}{2013}=\frac{x+2017}{2014}+\frac{x+2017}{2015}\)
\(\frac{x+2017}{2012}+\frac{x+2017}{2013}-\frac{x+2017}{2014}-\frac{x+2017}{2015}=0\)
\(\left(x+2017\right)\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
Mà \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}>0\)
\(\Rightarrow x+2017=0\)
\(\Rightarrow x=-2017\)
\(\frac{x+5}{2012}+1+\frac{x+4}{2013}+1=\frac{x+3}{2014}+1+\frac{x+2}{2015}+1\)
\(\frac{x+2017}{2012}+\frac{x+2017}{2013}-\frac{x+2017}{2014}-\frac{x+2017}{2015}=0\)
\(\left(x+2017\right)\cdot\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\)
Vì \(\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\ne0\)
suy ra \(x+2017=0\)
suy ra \(x=-2017\)
Vậy \(x=-2017\)
có 2014/1+2013/2+2012/3+...+2/2013+1/2014=[1+(2013/2)]+[1+(2012/3)]+...+[1+(2/2013)]+[1+(1/2014)]+1
=2015/2+2015/3+...+2015/2014+2015/2015=2015.[1/2+1/3+..+1/2015)
vậy (1/2+1/3+...+1/2015).x=(1/2+1/3+...+1/2015).2015
x=2015