Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy câu này khá giống nhau nhé anh (câu 1 giống câu 4 và 5, cấu 2 giống câu 3) =)))
Câu 1: 2x - 7 + (x - 14) = 0
<=> 3x -21 = 0
<=> 3x = 21 => x = 7
Câu 2:
x2 - 6x = 0 <=> x.(x - 6) = 0 => \(\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
Chúc anh học tốt !!!
Câu 1, 2 có người làm rồi nên mik làm tiếp cho mấy câu tiếp. Cứ áp dụng A.B = 0 => A = 0 hoặc B = 0
3; ( x - 3 )( 16 - 4x ) = 0
=> x - 3 = 0 hoặc 16 - 4x = 0
=> x = 3 hoặc x = 4
Vậy x = 3 hoặc x = 4.
4; ( x - 3 ) - ( 16 - 4x ) = 0
=> x - 3 - 16 + 4x = 0
=> ( x + 4x ) - ( 3 + 16 ) = 0
=> 5x - 19 = 0
=> x = 19/5
Vậy x = 19/5
5; ( x + 3 ) + ( 16 - 4x ) = 0
=> x + 3 + 16 - 4x = 0
=> ( x - 4x ) + ( 16 + 3 ) = 0
=> 3x + 19 = 0
=> x = 19/3
Vậy x = 19/3
\(\left(2x-1\right)\left(4x-16\right)>0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x>4\\x< \frac{1}{2}\end{cases}}\)
Vậy x>4 hoac x<1/2
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}2x-1>0\\x-4>0\end{cases}}\\\hept{\begin{cases}2x-1< o\\x-4< 0\end{cases}}\end{cases}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x>\frac{1}{2}\\x>4\end{cases}}\\\hept{\begin{cases}x< \frac{1}{2}\\x< 4\end{cases}}\end{cases}}}\)thank nhieu
\(a,\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\\ b,\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(1,5+\dfrac{-3}{x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{16}\\-\dfrac{3}{x}=-1,5=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=2\end{matrix}\right.\)
a: \(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b: \(\left(\dfrac{3}{4}x-\dfrac{9}{16}\right)\left(\dfrac{1}{5}+\left(-3\right):x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{16}\\\left(-3\right):x=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{16}:\dfrac{3}{4}=\dfrac{9}{16}\cdot\dfrac{4}{3}=\dfrac{3}{4}\\x=\left(-3\right):\dfrac{-1}{5}=15\end{matrix}\right.\)
1, \(x^2-4x-4x+16=0\)
\(\Leftrightarrow x^2-8x+16=0\)
\(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy.............
2, \(x^2+3x-5x-15=0\)
\(\Leftrightarrow x^2-2x+1-16=0\)
\(\Leftrightarrow\left(x-1\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy...............
3, \(x^2-6x+8=0\)
\(\Leftrightarrow x^2-6x+9-1=0\)
\(\Leftrightarrow\left(x-3\right)^2-1=0\)
\(\Leftrightarrow\left(x-3\right)^3=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy......................
4, \(x^2+8x+12=0\)
\(\Leftrightarrow x^2+8x+16-4=0\)
\(\Leftrightarrow\left(x+4\right)^2-4=0\)
\(\Leftrightarrow\left(x+4\right)^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=2\\x+4=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)
Vậy............
\(\left(2+4x\right)^2+\left(y-6\right)^2=0\)
\(\left\{{}\begin{matrix}\left(2+4x\right)^2\ge0\\\left(y-6\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(2+4x\right)^2+\left(y-6\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(2+4x\right)^2=0\Rightarrow2+4x=0\Rightarrow4x=-2\Rightarrow x=-0,5\\\left(y-6\right)^2=0\Rightarrow y-6=0\Rightarrow y=6\end{matrix}\right.\)
\(\left|8-4x\right|+\left|2x-y\right|=0\)
\(\left\{{}\begin{matrix}\left|8-4x\right|\ge0\\\left|2x-y\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left|8-4x\right|+\left|2x-y\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|8-4x\right|=0\Rightarrow8-4x=0\Rightarrow4x=8\Rightarrow x=2\\2.2-y=0\Rightarrow y=4\end{matrix}\right.\)
\(\left|16+0,5x\right|+\left(y-2\right)^2=0\)
\(\left\{{}\begin{matrix}\left|16+0,5x\right|\ge0\\\left(y-2\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left|16+0,5x\right|+\left(y-2\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|16+0,5x\right|=0\Rightarrow16+0,5x=0\Rightarrow0,5x=16\Rightarrow x=32\\\left(y-2\right)^2=0\Rightarrow y-2=0\Rightarrow y=2\end{matrix}\right.\)
x^2-2.2.x+2^2+12=0
=>(x-2)^2=-12
vì (x-2)^2>=0
=>x thuộc tập rỗng