K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

\(\Rightarrow x^2-9=0\Rightarrow\left(x-3\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

6 tháng 10 2021

-x^2 +3^2=0

x^2-3^2=0

(x-3)(x+3)=0

Th1 x-3=0

X=3

Th2

x+3=0

x=-3

HQ
Hà Quang Minh
Giáo viên
16 tháng 8 2023

\(a,5x\left(x^2-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,3\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow3\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\\ c,x^2-9x-10=0\\ \Leftrightarrow x^2+x-10x-10=0\\ \Leftrightarrow x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=10\end{matrix}\right.\)

16 tháng 8 2023

a, 5\(x\)(\(x^2\) - 9) = 0

    \(\left[{}\begin{matrix}x=0\\x^2-9=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\) 

Vậy \(x\) \(\in\) { -3; 0; 3}

b, 3.(\(x+3\)) - \(x^2\) - 3\(x\) = 0

    3.(\(x+3\)) - \(x\).( \(x\) + 3) = 0

    (\(x+3\))( 3 - \(x\)) = 0

     \(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)

Vậy \(x\) \(\in\){ -3; 3}

c, \(x^2\) - 9\(x\) - 10 = 0

   \(x^2\) + \(x\) - 10\(x\)  - 10 = 0

   \(x.\left(x+1\right)\) - 10.( \(x-1\)) = 0

        (\(x+1\))(\(x-10\)) = 0

         \(\left[{}\begin{matrix}x+1=0\\x-10=0\end{matrix}\right.\)

           \(\left[{}\begin{matrix}x=-1\\x=10\end{matrix}\right.\)

Vậy \(x\) \(\in\){ -1; 10}

 

23 tháng 8 2018

\(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)

4 tháng 9 2021

Cảm ơn nhưng m lại ko hiểu làm sao ra đc như thế vậy. Bạn giải rõ ra đc ko

25 tháng 10 2018

11 tháng 9 2019

a) x = 1; x = - 1 3                 b) x = 2.

c) x = 3; x = -2.                 d) x = -3; x = 0; x = 2.

14 tháng 10 2023

\(x^2+2y^2-4x+2y+\dfrac{9}{2}=0\)

\(x^2-4x+4+2y^2+2y+\dfrac{1}{2}=0\)

\(\left(x-2\right)^2+2\left(y+\dfrac{1}{2}\right)^2=0\)

Vì \(\left(x-2\right)^2+2\left(y+\dfrac{1}{2}\right)^2\ge0\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}\end{matrix}\right.\)

14 tháng 10 2023

\(x^2+2y^2-4x+2y+\dfrac{9}{2}=0\)

=>\(x^2-4x+4+2y^2+2y+\dfrac{1}{2}=0\)

=>\(\left(x-2\right)^2+2\left(y^2+y+\dfrac{1}{4}\right)=0\)

=>\(\left(x-2\right)^2+2\left(y+\dfrac{1}{2}\right)^2=0\)

mà \(\left(x-2\right)^2+2\left(y+\dfrac{1}{2}\right)^2>=0\forall x,y\)

nên \(\left\{{}\begin{matrix}x-2=0\\y+\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}\end{matrix}\right.\)

6 tháng 8 2021

b)x2-2x+1=4

⇔(x-1)2=4

\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

c)x2-4x+4=9

⇔ (x-2)2=9

\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

d)4x2-4x+1=4

⇔ (2x-1)2=4

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)

e)x2-2x-8=0

⇔ x2-4x+2x-8=0

⇔ x(x-4)+2(x-4)=0

⇔(x-4)(x+2)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

f)9x2-6x-8=0

⇔ 9x2-12x+6x-8=0

⇔ 3x(3x-4)+2(3x-4)=0

⇔ (3x-4)(3x+2)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=\dfrac{-2}{3}\end{matrix}\right.\)

9 tháng 8 2021

a)4x2-9=0

⇔ (2x-3)(2x+3)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b)(x+5)2-(x-1)2=0

⇔ (x+5-x+1)(x+5+x-1)=0

⇔ 12(x+2)=0

⇔ x=-2

c)x2-6x-7=0

⇔ x2-7x+x-7=0

⇔ x(x-7)+(x-7)=0

⇔ (x-7)(x+1)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)

d)(x+1)2-(2x-1)2=0

⇔ (x+1-2x+1)(x+1+2x-1)=0

⇔3x(2-x)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

 

9 tháng 8 2021

a, 4x2 - 9 = 0

<=> 4x2 = 9

<=> x2 = \(\dfrac{9}{4}\) => x = \(\sqrt{\dfrac{9}{4}}\)

b, (x + 5 )2 - ( x - 1 )2 = 0

<=> ( x+5-x+1 )(x+5+x-1) = 0

<=> 6(2x+4) = 0

<=> 12x+24=0

<=> 12x = -24

<=> x = -2

c, x2-6x-7=0

<=> x2+x-7x-7=0

<=> x(x+1)-7(x+1)=0

<=> (x-7)(x+1)=0

=> x+7=0 hoặc x+1=0

+ x-7=0 => x=7

+ x+1=0 => x=-1

d, \(\left(x+1\right)^2-\left(2x-1\right)^2=0\)

<=> \(\left(x+1-2x+1\right)\left(x+1+2x-1\right)=0\)

<=> (-x+2).3x=0

=> x=0 hoặc (-x+2).3=0

+ (-x+2).3=0 => -3x+6=0 => x=-2