Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(p=2\)
\(\Rightarrow x^3=4+1=5\)
\(\Leftrightarrow x=\sqrt[3]{5}\left(ktm\right)\)
Xét \(p>2\Rightarrow p\)lẻ
Ta thấy \(2p+1\)lẻ với mọi \(p\)
\(\Rightarrow x^3\)lẻ \(\Leftrightarrow x\)lẻ
Đặt \(x=2a+1\)
\(\Rightarrow\left(2a+1\right)^3=2p+1\)
\(\Leftrightarrow8a^3+12a+6a+1=2p+1\)
\(\Leftrightarrow2a\left(4a^2+6a+3\right)=2p\)
\(\Leftrightarrow a\left(4a^2+6a+3\right)=p\)
Mà \(p\)là số nguyên tố
\(\Rightarrow a\left(4a^2+6a+3\right)=p\Leftrightarrow\orbr{\begin{cases}a=1\\a=p\end{cases}}\)
\(\left(+\right)a=1\Rightarrow1\left(4.1^2+6.1+3\right)=p\)
\(\Leftrightarrow p=13\left(tm\right)\Rightarrow x^3=2.13+1\)
\(\Leftrightarrow x^3=27\Leftrightarrow x=3\left(tm\right)\)
\(\left(+\right)a=p\Rightarrow p\left(4p^2+6p+3\right)=p\)
\(\Leftrightarrow4p^2+6p+3=1\left(p>2\right)\)
\(\Leftrightarrow4p^2+4p+2p+2=0\)
\(\Leftrightarrow\left(4p+2\right)\left(p+1\right)=0\Leftrightarrow\orbr{\begin{cases}4p+2=0\\p+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}p=-\frac{2}{4}\left(ktm\right)\\p=-1\left(ktm\right)\end{cases}}\)
Vậy với p là số nguyên tố thì x = 3
Vì p là snt nên 2p+1 là số lẻ. Do đó x3 là một số lẻ và x là số lẻ
Ta đặt x=2k+1 (k thuộc N)
Khi đó 2p+1=2(2k+1)3=8k3+12k2+6k+1
Vậy đặt 2p=8k3+12k2+6k
<=> p=4k3+6k2+3k=k(4k2+6k+3)
Vì p là số nguyên tối nên k=1 do đó x=3
Vì p là số nguyên tố nên 2p + 1 là số lẻ. Mà x 3 = 2p + 1 nên x 3 cũng là một số lẻ, suy ra x là số lẻ
Gọi x = 2k + 1 (k Є N). ta có
x 3 = 2p + 1 ó ( 2 k + 1 ) 3 = 2p + 1
⇔ 8 k 3 + 12 k 2 + 6 k + 1 = 2 p + 1 ⇔ 2 p = 8 k 3 + 12 k 2 + 6 k ⇔ p = 4 k 3 + 6 k 2 + 3 k = k ( 4 k 2 + 6 k + 3 )
Mà p là số nguyên tố nên k = 1 => x = 3
Vậy số cần tìm là x = 3
Đáp án cần chọn là: D
\(P=\left(\frac{2x}{2x^2-5x+2}-\frac{5}{2x-3}\right):\left(3+\frac{2}{1-x}\right) \)(dk x khac 3/2 ; x khac 1)
\(P=\left(\frac{2x}{\left(2x-3\right)\left(x-1\right)}-\frac{5\left(x-1\right)}{\left(2x+3\right)\left(x-1\right)}\right):\left(\frac{3\left(x-1\right)}{x-1}-\frac{2}{x-1}\right)\)
\(P=\frac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\frac{3x-3-2}{x-1}\)
\(P=\frac{-\left(3x-5\right)}{\left(2x-3\right)\left(x-1\right)}\cdot\frac{x-1}{3x-5}\)
\(P=\frac{-1}{2x-3}\)
b) TC: \(|2x-1|=3\)
TH1) \(|2x-1|=2x-1\)khi \(x\ge\frac{1}{2}\)
2x-1=3 suy ra x=2 ( thoa dk)
TH2) \(|2x-1|=-2x+1\)khi \(x< \frac{1}{2}\)
-2x+1=3 suy ra x=-1 ( thoa dk)
khi x= 2 thi P=-1
khi x= -1 thi P=1/5
c) de P thuoc Z thi \(-\frac{1}{2x-3}\)thuoc Z
suy ra \(\frac{1}{3-2x}\)thuoc Z
suy ra 3-2x thuoc \(Ư\left(1\right)\in\left\{\pm1\right\}\)
khi 3-2x=1 thi x= 1 (ko thoa dk x khac 1)
khi 3-2x=-1 thi x=2(thoa dk)
vay x=2 thi P thuoc Z
d) giai tg tu cau c
Lời giải:
Với $p$ chẵn thì $p=2$.
$x^3=2p+1=2.2+1=5$ (vô lý do $5$ không là số lập phương)
Do đó $p$ lẻ
$x^3=2p+1$
$\Leftrightarrow 2p=x^3-1=(x-1)(x^2+x+1)$
Vì $x$ lẻ nên $x-1$ chẵn, $x^2+x+1$ lẻ. Do đó:
$x-1=2; x^2+x+1=p$
$\Rightarrow x=3; p=13$