Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{2}{x\left(x+1\right)}=\frac{2010}{2012}\)
\(\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{x\left(x+1\right)}=\frac{2010}{2012}\)
\(\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{x\left(x+1\right)}=\frac{2010}{2012}\)
\(2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2010}{2012}\)
\(2\left(\frac{1}{4}-\frac{1}{x+1}\right)=\frac{2010}{2012}\)
\(\frac{1}{4}-\frac{1}{x+1}=\frac{2010}{2012}\div2\)
\(\frac{1}{4}-\frac{1}{x+1}=\frac{1005}{2012}\)
\(\frac{1}{x+1}=\frac{1}{4}-\frac{1005}{2012}\)
\(\frac{1}{x+1}=\frac{-502}{2012}=-\frac{251}{1006}\)
\(\Rightarrow x+1=1\div-\frac{251}{1006}=-\frac{1006}{251}\)
\(x=\frac{-1006}{251}-1=-\frac{1257}{251}\)
\(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)
\(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{x.\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{x.\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}=\dfrac{2010}{2012}:2\)
\(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}=\dfrac{1005}{2012}\)
\(\dfrac{1}{\left(x+1\right)}=\dfrac{1}{4}-\dfrac{1005}{2012}\)
\(\dfrac{1}{\left(x+1\right)}=\dfrac{-251}{1006}\)
\(\Rightarrow1:\left(x+1\right)=\dfrac{-251}{1006}\)
\(\left(x+1\right)=1:\dfrac{-251}{1006}\)
\(x+1=\dfrac{-1006}{251}\)
\(x=\dfrac{-1006}{251}-1\)
\(x=\dfrac{-1257}{251}\)
Vì \(x\in N\) nên \(x=\varnothing\) (không có giá trị nào của x thoả mãn)
\(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)
\(\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)
\(\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{x.\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(2\left(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}=\dfrac{2010}{2012}:2\)
\(\dfrac{1}{4}-\dfrac{1}{\left(x+1\right)}=\dfrac{1005}{2012}\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)}=\dfrac{1}{4}-\dfrac{1005}{2012}\)
\(\dfrac{1}{\left(x+1\right)}=\dfrac{-251}{1006}\)
\(\Rightarrow1:\left(x+1\right)=\dfrac{-251}{1006}\)
\(\left(x+1\right)=1:\dfrac{-251}{1006}\)
\(x+1=\dfrac{-1006}{251}\)
\(x=\dfrac{-1006}{251}-1\)
\(x=\dfrac{-1257}{251}\)
Nếu bạn tìm \(x\in Z\) hay \(x\in N\) thì \(x=\varnothing\) (không có x thoả mãn)
Ta có : 1/3+1/6+1/10+ .....+2/x.(x+1)=2010/2012
=>2/6+2/12+2/20+........+2/x(x+1)=2010/2012
=>2.(1/2.3+1/3.4+1/4.5+.....+1/x.(x+1)=2010/2012
................................
Bạn tự làm tiếp nhé ! x=1005
\(\Leftrightarrow2\left(\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(\Leftrightarrow\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2010}{4024}=\dfrac{1005}{2012}\)
=>1/x+1=-251/1006
=>x+1=-1006/251
=>x=-1257/251
1/x+1=-251/1006
tới đoạn này mik chưa hiểu ak