K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

a)  \(|2x-2|+|3-3x|=125\left(1\right)\)

Ta có: 

\(2x-2=0\Leftrightarrow x=1\)

\(3-3x=0\Leftrightarrow x=1\)

Lập bảng xét dấu :

  2x-2 3-3x 1 0 0 - - + +

Với \(x< 1\Rightarrow\hept{\begin{cases}2x-2< 0\\3-3x>0\end{cases}\Rightarrow\hept{\begin{cases}|2x-2|=2-2x\\|3-3x|=3-3x\end{cases}}\left(2\right)}\)

Thay (2) vào (1) ta được :

\(\left(2-2x\right)+\left(3-3x\right)=125\)

\(2-2x+3-3x=125\)

\(-5x+5=125\)

\(-5x=120\)

\(x=-24\)( chọn )

Với \(x\ge1\Rightarrow\hept{\begin{cases}2x-2>0\\3-3x< 0\end{cases}}\Rightarrow\hept{\begin{cases}|2x-2|=2x-2\\|3-3x|=3x-3\end{cases}\left(3\right)}\)

Thay (3) vào (1) ta được :

\(\left(2x-2\right)+\left(3x-3\right)=125\)

\(2x-2+3x-3=125\)

\(5x-5=125\)

\(5x=130\)

\(x=26\)9 (CHọn )

Vậy \(x\in\left\{-24;26\right\}\)

1 tháng 7 2019

b) \(|x-2018|+|x-2019|=1\left(1\right)\)

Ta có: \(x-2018=0\Leftrightarrow x=2018\)

          \(x-2019=0\Leftrightarrow x=2019\)

Lập bảng xét dấu :

x-2018 x-2019 2018 0 2019 0 - - - + + +

+) Với \(x< 2018\Rightarrow\hept{\begin{cases}x-2018< 0\\x-2019< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=2018-x\\|x-2019|=2019-x\end{cases}\left(2\right)}}\)

Thay (2) vào (1) ta được :

\(\left(2018-x\right)+\left(2019-x\right)=1\)

\(2018-x+2019-x=1\)

\(4037-2x=1\)

\(2x=4036\)

\(x=2018\)( Loại  )

+) Với \(2018\le x< 2019\Rightarrow\hept{\begin{cases}x-2018>0\\x-2019< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=x-2018\\|x-2019|=2019-x\end{cases}\left(3\right)}}\)

Thay (3) vào (1) ta được :

\(\left(x-2018\right)+\left(2019-x\right)=1\)

\(x-2018+2019-x=1\)

\(1=1\)( luôn đúng )

+) Với \(x\ge2019\Rightarrow\hept{\begin{cases}x-2018>0\\x-2019>0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=x-2018\\|x-2019|=x-2019\end{cases}\left(4\right)}}\)

Thay (4) vào (1) ta được :

\(\left(x-2018\right)+\left(x-2019\right)=1\)

\(2x-4037=1\)

\(x=2019\)( Chọn )

Vậy \(2018\le x\le2019\)

7 tháng 8 2017

1) 2x.(5x-3x)+2x.(3x-5)-3.(x-7)=3

   10x-6x^2+6x^2-10x-3x+21=3

    -3x                             =-18

suy ra x=6

2) 3x.(x+1) -2x.(x+2)=-1-x

     3x^2 +3x-2x^2-4x =-1-x

     x^2 =-1

suy ra không có giá trị nào của x thỏa mãn đề bài

3) 2x^2 +3.(x^2-1)=5x(x+1)

  2x^2 +3x^2-3 =5x^2+5x

  -5x      =3

x=-3/5

giải rồi đấy

nhớ tích đúng nha :)

7 tháng 8 2017

bạn coi lại đề câu 1 đi

23 tháng 9 2021

\(a,\Leftrightarrow-\dfrac{1}{2}x=\dfrac{1}{4}\Leftrightarrow x=-\dfrac{1}{2}\\ b,\Leftrightarrow\dfrac{1}{6}:x=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\Leftrightarrow x=\dfrac{1}{6}:\dfrac{5}{6}=\dfrac{1}{5}\\ c,\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=3\\x+\dfrac{1}{5}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14}{5}\\x=-\dfrac{16}{5}\end{matrix}\right.\)

\(d,\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\dfrac{22}{9}-\dfrac{7}{3}=\dfrac{1}{9}\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{3}\\x+\dfrac{1}{2}=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{6}\\x=-\dfrac{5}{6}\end{matrix}\right.\\ e,\Leftrightarrow2\left|x\right|=2-\dfrac{1}{2}=\dfrac{3}{2}\\ \Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{3}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)

\(f,\Leftrightarrow\left|x+\dfrac{1}{2}\right|=1+\dfrac{1}{6}=\dfrac{7}{6}\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{7}{6}\\x+\dfrac{1}{2}=-\dfrac{7}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

e: ta có: \(2\left|x\right|+\dfrac{1}{2}=2\)

\(\Leftrightarrow2\left|x\right|=\dfrac{3}{2}\)

\(\Leftrightarrow\left|x\right|=\dfrac{3}{4}\)

hay \(x\in\left\{\dfrac{3}{4};-\dfrac{3}{4}\right\}\)

30 tháng 12 2017

khó hiểu vcl

31 tháng 12 2017

đúng lun ko hiểu một chút nào
 

15 tháng 10 2018

\(\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0.\)

\(\text{Ta có}\hept{\begin{cases}\left|2x^2-27\right|^{2019}\ge0\\\left(5y+12\right)^{2018}\ge0\end{cases}}\text{Mà}\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0\)

\(\Rightarrow\hept{\begin{cases}\left|2x^2-27\right|^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(2x-27\right)^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-27=0\\5y+12=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=27\\5y=-12\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}}}}}\) 

\(\text{Vậy}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}\) 

30 tháng 7 2019

1. Giải phương trình: |2x-3|+|x-2|=7

|2x-3|+|x-2|=7

\(\Rightarrow\left[{}\begin{matrix}2x-3+x-2=7\\-2x+3-x+2=7\\-2x+3+x-2=7\\2x-3-x+2=7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=7\\-3x+5=7\\-x+1=7\\x-1=7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\frac{2}{3}\\x=-8\\x=8\end{matrix}\right.\)

11 tháng 8 2023

\(\left(2x+1\right)\left(x^2-x\right)+x\left(5+x-2x^2\right)=3x+7\)

\(2x^3-2x^2+x^2-x+5x+x^2-2x^3=3x+7\)

\(5x-x=3x+7\)

\(4x-3x=7\)

\(x=7\)

(2x+1)(x^2-x)+x(-2x^2+x+5)=3x+7

=>2x^3-2x^2+x^2-x-2x^3+x^2+5x=3x+7

=>-x^2-x+x^2+5x=3x+7

=>4x=3x+7

=>x=7

28 tháng 6 2021

`|2x+1|-3=x+4`

`<=>|2x+1|=x+4+3=x+7(x>=-7)`

`**2x+1=x+7`

`<=>x=7-1=6(tm)`

`**2x+1=-x-7`

`<=>3x=-6`

`<=>x=-2(tm)`

`|3x-5|=1-3x(x<=1/3)`

`**3x-5=1-3x`

`<=>6x=6`

`<=>x=1(l)`

`**3x-5=3x-1`

`<=>-5=-1` vô lý

`|2x+2|+|x-1|=10`

Nếu `x>=1`

`pt<=>2x+2+x-1=10`

`<=>3x+1=10`

`<=>3x=9`

`<=>x=3(tm)`

Nếu `x<=-1`

`pt<=>-2x-2+1-x=10`

`<=>-1-3x=10`

`<=>-11=3x`

`<=>x=-11/3(tm)`

Nếu `-1<=x<=1`

`pt<=>2x+2+1-x=10`

`<=>x+3=10`

`<=>x=7(l)`

Vậy `S={3,-11/3}`

pt là phương trình phải ko vậy?