Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
=>-13x=26
hay x=-2
b: \(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
hay \(x\in\left\{1;\dfrac{1}{5}\right\}\)
c: \(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
hay \(x\in\left\{-5;2\right\}\)
`a)5x(x-1)-(x+2)(5x-7)=6`
`<=>5x^2-5x-(5x^2-7x+10x-14)=6`
`<=>5x^2-5x-(5x^2+3x-14)=6`
`<=>-8x+14=6`
`<=>8x=8<=>x=1`
Vậy `x=1`
`b)(x+2)^2-(x^2-4)=0`
`<=>x^2+4x+4-x^2+4=0`
`<=>4x+8=0`
`<=>4x=-8`
`<=>x=-2`
Vậy `x=-2`
\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)
\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)
a) Ta có: \(x^2-2x+1=25\)
\(\Leftrightarrow\left(x-1\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b) Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
c) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
d) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
a,\(< =>\left(x-1\right)^2-5^2=0< =>\left(x-1-5\right)\left(x-1+5\right)=0\)
\(< =>\left(x-6\right)\left(x+4\right)=0=>\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b,\(< =>25x^2+10x+1-25x^2+9-30=0\)
\(< =>10x-20=0< =>10\left(x-2\right)=0< =>x=2\)
c,\(< =>x^3-1-x\left(x^2-4\right)-5=0\)
\(< =>x^3-1-x^2+4x-5=0< =>4x-6=0< =>x=\dfrac{6}{4}\)\(d,< =>\left(x-2\right)^3-x^3+3^3+6x^2+12x+6-15=0\)
\(< =>x^3-6x^2+12x-x^3+6x^2+12x+10=0\)
\(< =>24x+10=0< =>x=-\dfrac{5}{12}\)
a: Ta có: \(x^2-2x+1=25\)
\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)
b: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
c: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)
\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)
\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a: \(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
b: \(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
a) \(\Rightarrow\left(x-1\right)^2=25\)
\(\Rightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b) \(\Rightarrow25x^2+10x+1-25x^2+9=30\)
\(\Rightarrow10x=20\Rightarrow x=2\)
a. x2 - 2x + 1 = 25
<=> x2 - 2x - 24 = 0
<=> x2 - 6x + 4x - 24 = 0
<=> x(x - 6) + 4(x - 6) = 0
<=> (x + 4)(x - 6) = 0
<=> \(\left[{}\begin{matrix}x+4=0\\x-6=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-4\\x=6\end{matrix}\right.\)
b. (5x + 1)2 - (5x - 3)(5x + 3) = 30
<=> 25x2 + 10x + 1 - 25x2 + 9 = 30
<=> 25x2 - 25x2 + 10x = 30 - 1 - 9
<=> 10x = 20
<=> x = 2
a) \(\Rightarrow x\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)
a) \(5x\left(x-1\right)=x-1\)
\(\Rightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right).\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
Vậy \(x=1\) hoặc \(x=\frac{1}{5}\)
b) \(2\left(x+5\right)-x^2-5x\)
\(\Rightarrow2\left(x+5\right)-x\left(x+5\right)\)
\(\Rightarrow\left(x+5\right).\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
Vậy \(x=-5\)hoặc \(x=2\)