Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) Ta có số đối của 2,5 là -2,5
\(\Rightarrow x-3,5=-2,5\)
\(\Rightarrow x=-2,5+3,5\)
\(\Rightarrow x=1\)
b) Ta có số đối của -12 là 12
\(\Rightarrow3x-12=12\)
\(\Rightarrow3x=24\)
\(\Rightarrow x=\dfrac{24}{3}=8\)
c) Ta có số đối của \(-\dfrac{1}{8}\) là \(\dfrac{1}{8}\)
\(\Rightarrow2x+\dfrac{1}{4}=\dfrac{1}{8}\)
\(\Rightarrow2x=\dfrac{1}{8}-\dfrac{1}{4}\)
\(\Rightarrow2x=-\dfrac{1}{8}\)
\(\Rightarrow x=-\dfrac{1}{8}:2\)
\(\Rightarrow x=-\dfrac{1}{16}\)
d) Bạn viết lại đề
\(\dfrac{x}{2}=\dfrac{y}{5};\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{20}\)
Áp dụng tc dstbn:
\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{20}=\dfrac{2x+3y-2z}{6\cdot2+3\cdot15-2\cdot20}=\dfrac{34}{17}=2\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=30\\z=40\end{matrix}\right.\)
Lời giải:
$\frac{x}{2}=\frac{y}{5}; \frac{y}{3}=\frac{z}{4}$
$\Rightarrow \frac{x}{6}=\frac{y}{15}=\frac{z}{20}$
Áp dụng TCDTSBN:
$\frac{x}{6}=\frac{y}{15}=\frac{z}{20}$
$=\frac{2x}{12}=\frac{3y}{45}=\frac{2z}{40}=\frac{2x+3y-2z}{12+45-40}=\frac{34}{17}=2$
$\Rightarrow x=2.6=12; y=2.15=30; z=2.20=40$
\(a,\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow4x-3-x-5=30-3x\\ \Leftrightarrow4x-x+3x=30+5+3\\ \Leftrightarrow6x=38\\ \Leftrightarrow x=\dfrac{19}{3}\)
\(\dfrac{3}{x-2}=\dfrac{-2}{x-4}\left(dk:x\ne2;x\ne4\right)\)
\(\Rightarrow3\cdot\left(x-4\right)=-2\cdot\left(x-2\right)\)
\(\Rightarrow3x-12=-2x+4\)
\(\Rightarrow3x+2x=4+12\)
\(\Rightarrow5x=16\)
\(\Rightarrow x=\dfrac{16}{5}\left(tm\right)\)
\(ĐK:x\ne2;x\ne4\\ Có:\dfrac{3}{x-2}=\dfrac{-2}{x-4}\\ \Leftrightarrow3\left(x-4\right)=-2\left(x-2\right)\\ \Leftrightarrow3x-12=-2x+4\\ \Leftrightarrow3x+2x=4+12\\ \Leftrightarrow5x=16\\ \Leftrightarrow x=\dfrac{16}{5}\left(TM\right)\\ Vậy:x=\dfrac{16}{5}\)
\(\frac{x+5}{3}=\frac{x-1}{4}\)
\(\Rightarrow\left(x+5\right).4=\left(x-1\right).3\)
\(\Rightarrow4x+20=3x-3\)
\(\Rightarrow4x-3x=-3-20\Rightarrow x=-23\)
\(\frac{x+5}{3}=\frac{x-1}{4}\)
\(\Rightarrow\left(x+5\right)\cdot4=\left(x-1\right)\cdot3\)
\(4x+20=3x-3\)
\(4x-3x=-3-20\)
\(x=-23\)
Vậy \(x=-23\)
\(\left(x-2\right)^{x+2}=\left(x-2\right)^{x+4}\)
\(\left(x-2\right)^{x+2}-\left(x-2\right)^{x+2}.\left(x-2\right)^2=0\)
\(\left(x-2\right)^{x+2}.\left[1-\left(x-2\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{x+2}=0\\1-\left(x-2\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\\left(x-2\right)^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\x-2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\x=3\end{cases}}\)
\(\left|x-3,2\right|+\left|2x-\frac{1}{5}\right|=x+3.\)
ĐK : \(x+3\ge0\Leftrightarrow x\ge-3\)
Th1 : \(x-3,2+2x-\frac{1}{5}=x+3\)
\(x-3,2+2x=x+\frac{16}{5}\)
\(x+2x=x+\frac{32}{5}\)
\(2x=\frac{32}{5}\)
\(\Leftrightarrow x=3,2\)(tm)
\(x-3,2+2x-\frac{1}{5}=3-x\)
\(x-3,2+2x=3-x+\frac{1}{5}\)
\(x-3,2+2x=\frac{16}{5}-x\)
\(x+2x=\frac{16}{5}-x+3,2\)
\(x+2x=\frac{32}{5}-x\)
\(2x=\frac{32}{5}-x-x\)
\(2x=\frac{32}{5}-2x\)
\(4x=\frac{32}{5}\)
\(x=1,6\)(tm)
Vậy \(x=1,6\)hoặc \(x=3,2\)
a)\(x=-\frac{4}{7}\Rightarrow\left|x\right|=\left|-\frac{4}{7}\right|=\frac{4}{7}\)
b)\(x=\frac{-3}{-11}=\frac{3}{11}\Rightarrow\left|x\right|=\left|\frac{3}{11}\right|=\frac{3}{11}\)
c)\(x=-0,749\Rightarrow\left|x\right|=\left|-0,749\right|=0,749\)
d)\(x=-34\Rightarrow\left|x\right|=\left|-34\right|=34\)