Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`|2x+1|-3=x+4`
`<=>|2x+1|=x+4+3=x+7(x>=-7)`
`**2x+1=x+7`
`<=>x=7-1=6(tm)`
`**2x+1=-x-7`
`<=>3x=-6`
`<=>x=-2(tm)`
`|3x-5|=1-3x(x<=1/3)`
`**3x-5=1-3x`
`<=>6x=6`
`<=>x=1(l)`
`**3x-5=3x-1`
`<=>-5=-1` vô lý
`|2x+2|+|x-1|=10`
Nếu `x>=1`
`pt<=>2x+2+x-1=10`
`<=>3x+1=10`
`<=>3x=9`
`<=>x=3(tm)`
Nếu `x<=-1`
`pt<=>-2x-2+1-x=10`
`<=>-1-3x=10`
`<=>-11=3x`
`<=>x=-11/3(tm)`
Nếu `-1<=x<=1`
`pt<=>2x+2+1-x=10`
`<=>x+3=10`
`<=>x=7(l)`
Vậy `S={3,-11/3}`
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
a) \(\Leftrightarrow2\left|3x-1\right|=\dfrac{4}{5}\)
\(\Leftrightarrow\left|3x-1\right|=\dfrac{2}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=\dfrac{2}{5}\\3x-1=-\dfrac{2}{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{15}\\x=\dfrac{1}{5}\end{matrix}\right.\)
b)TH1: \(x\ge3\)
\(\Leftrightarrow x+5+x-3=9\Leftrightarrow2x=7\Leftrightarrow x=\dfrac{7}{2}\left(tm\right)\)
TH2: \(-5\le x< 3\)
\(\Leftrightarrow x+5-x+3=9\Leftrightarrow8=9\left(VLý\right)\)
TH3: \(x< -5\)
\(\Leftrightarrow-x-5-x+3=9\Leftrightarrow2x=-11\Leftrightarrow x=-\dfrac{11}{2}\left(tm\right)\)
\(a,2.|3x-1|-\dfrac{3}{4}=\dfrac{1}{20}\)
\(2.|3x-1|=\dfrac{1}{20}+\dfrac{3}{4}\)
\(2.|3x-1|=\dfrac{4}{5}\)
\(|3x-1|=\dfrac{4}{5}:2\)
\(|3x-1|=\dfrac{2}{5}\)
\(\Rightarrow3x-1=\pm\dfrac{2}{5}\)
\(3x-1=\dfrac{2}{5}\)
\(3x=\dfrac{2}{5}+1\)
\(3x=\dfrac{7}{5}\)
\(x=\dfrac{7}{5}:3\)
\(x=\dfrac{7}{15}\)
\(3x-1=-\dfrac{2}{5}\)
\(3x=-\dfrac{2}{5}+1\)
\(3x=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}:3\)
\(x=\dfrac{1}{5}\)
b. `|x + 1| + |2x - 3| = |3x - 2|`
Ta có: \(\left|x+1\right|+\left|2x-3\right|\ge\left|x+1+2x-3\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left|3x-2\right|=\left|3x-2\right|\) (luôn đúng với mọi x)
Vậy phương trình có vô số nghiệm.
\(a,\Leftrightarrow2^x\left(1+2^4\right)=544\\ \Leftrightarrow2^x=\dfrac{544}{17}=32=2^5\\ \Leftrightarrow x=5\\ b,\Leftrightarrow\left(\dfrac{2}{5}-3x\right)^2=\dfrac{9}{25}\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\3x-\dfrac{2}{5}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Đặt `3(x+2)-1/3(6-3x)=0`
`<=>3(x+2)-(2-x)=0`
`<=>3x+2+x-2=0`
`<=>4x=0`
`<=>x=0`
Vậy nghiệm của đa thức là 0
`3x(x-5)-(x+3x)=0`
`<=>3x(x-5)-4x=0`
`<=>x(3x-15-4)=0`
`<=>x(3x-19)=0`
`<=>[(x=0),(3x-19=0):}`
`<=>[(x=0),(x=19/3):}`
Vậy nghiệm đa thức là 0 và `19/3`.
a) Đặt \(3\left(x+2\right)-\dfrac{1}{3}\left(6-3x\right)=0\)
\(\Leftrightarrow3x+6-2+x=0\)
\(\Leftrightarrow4x=-4\)
hay x=-1
b) Đặt 3x(x-5)-(x+3x)=0
\(\Leftrightarrow3x^2-15x-4x=0\)
\(\Leftrightarrow x\left(3x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{3}\end{matrix}\right.\)
\(c,\Rightarrow\left[{}\begin{matrix}-2\left(x+2\right)+\left(4-x\right)=11\left(x< -2\right)\\2\left(x+2\right)+\left(4-x\right)=11\left(-2\le x\le4\right)\\2\left(x+2\right)+\left(x-4\right)=11\left(x>4\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{11}{3}\left(tm\right)\\x=3\left(tm\right)\\x=\dfrac{11}{3}\left(ktm\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{3}\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}x+\dfrac{5}{2}=3x+1\\x+\dfrac{5}{2}=-3x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{7}{8}\end{matrix}\right.\)
Ta có:
\(3x=4y\Leftrightarrow\frac{x}{4}=\frac{y}{3}\) và \(y-x=5\)
Áp dụng tính chất của dạy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=\frac{5}{1}=5\)
\(\hept{\begin{cases}\frac{x}{4}=5\Rightarrow x=5.4=20\\\frac{y}{5}=5\Rightarrow y=5.5=25\end{cases}}\)
Vậy \(x=20;y=25\)
b)
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và \(a-2b+3c=35\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a-2b+3c}{3-2.4+3.5}=\frac{35}{10}=3,5\)
\(\hept{\begin{cases}\frac{a}{3}=3,5\Rightarrow a=3,5.3=10,5\\\frac{b}{4}=3,5\Rightarrow b=3,5.4=14\\\frac{c}{5}=3,5\Rightarrow c=3,5.5=17,5\end{cases}}\)
Vậy \(a=10,5;b=14;c=17,5\)
Bài 1: \(3x=4y\Leftrightarrow y=\frac{3x}{4}\)
thay vào \(y-x=5\Leftrightarrow\frac{3x}{4}-x=5\Leftrightarrow\frac{-x}{4}=5\Leftrightarrow x=-20\Leftrightarrow y=\frac{3x}{4}=\frac{3.\left(-20\right)}{4}\)=-15
Bài 2: Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{2b}{8}=\frac{3c}{15}=\frac{a-2b+3c}{3-8+15}=\frac{35}{10}=\frac{7}{2}\)
=>\(a=\frac{7}{2}.3=\frac{21}{2};b=\frac{7}{2}.4=14;c=\frac{7}{2}.5=\frac{35}{2}\)
a: \(\Leftrightarrow-x^2-3x+x+3+x^2-6x=11\)
=>-8x+3=11
=>-8x=8
hay x=-1
b: \(\Leftrightarrow3x^2-15x+x-5-3x^2+3x=5\)
=>-11x=10
hay x=-10/11