Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a,
\(\left(\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}+...+\dfrac{2}{19\cdot21}\right)\cdot462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ \left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\cdot462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ \left(\dfrac{1}{11}-\dfrac{1}{21}\right)\cdot462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ \dfrac{10}{231}\cdot462-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ 20-\left[2,04:\left(x+1,05\right)\right]:0,12=19\\ \left[2,04:\left(x+1,05\right)\right]:0,12=1\\ 2,04:\left(x+1,05\right)=0,12\\ x+1,05=17\\ x=15,95\)
b,
\(\dfrac{1}{24\cdot25}+\dfrac{1}{25\cdot26}+...+\dfrac{1}{29\cdot30}+x:\dfrac{1}{3}=-4\\ \dfrac{1}{24}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{26}+...+\dfrac{1}{29}-\dfrac{1}{30}+x\cdot3=-4\\ \dfrac{1}{24}-\dfrac{1}{30}+x\cdot3=-4\\ \dfrac{1}{120}+x\cdot3=-4\\ 3x=\dfrac{-481}{120}\\ x=\dfrac{-481}{360}\)
2.
a,
\(\dfrac{15}{28}-\dfrac{186}{1116}-\dfrac{121}{462}+\dfrac{189}{198}\\ =\dfrac{15}{28}-\dfrac{1}{6}-\dfrac{11}{42}+\dfrac{21}{22}\\ =\dfrac{495}{924}-\dfrac{154}{924}-\dfrac{242}{924}+\dfrac{882}{924}\\ =\dfrac{495-154-242+882}{924}\\ =\dfrac{981}{924}\\ =\dfrac{327}{308}\)
b,
\(\left(1+\dfrac{1}{1\cdot3}\right)\cdot\left(1+\dfrac{1}{2\cdot4}\right)\cdot\left(1+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\dfrac{1}{99\cdot101}\right)\\ =\left(\dfrac{1\cdot3}{1\cdot3}+\dfrac{1}{1\cdot3}\right)\cdot\left(\dfrac{2\cdot4}{2\cdot4}+\dfrac{1}{2\cdot4}\right)\cdot\left(\dfrac{3\cdot5}{3\cdot5}+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(\dfrac{99\cdot101}{99\cdot101}+\dfrac{1}{99\cdot101}\right)\\ =\left(\dfrac{2^2-1}{1\cdot3}+\dfrac{1}{1\cdot3}\right)\cdot\left(\dfrac{3^2-1}{2\cdot4}+\dfrac{1}{2\cdot4}\right)\cdot\left(\dfrac{4^2-1}{3\cdot5}+\dfrac{1}{3\cdot5}\right)\cdot...\cdot\left(\dfrac{100^2-1}{99\cdot101}+\dfrac{1}{99\cdot101}\right)\)\(=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{100^2}{99\cdot101}\\ =\dfrac{2\cdot2}{1\cdot3}\cdot\dfrac{3\cdot3}{2\cdot4}\cdot\dfrac{4\cdot4}{3\cdot5}\cdot...\cdot\dfrac{100\cdot100}{99\cdot101}\\ =\dfrac{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot100\cdot100}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot99\cdot101}\\ =\dfrac{\left(2\cdot3\cdot4\cdot...\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot...\cdot100\right)}{\left(1\cdot2\cdot3\cdot...\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot101\right)}\\ =\dfrac{100\cdot2}{1\cdot101}\\ =\dfrac{200}{101}\)
(1/24.25 + 1/25.26 + ... + 1/29.30) . 120 + x : 1/3 = -4
(1/24 - 1/25 + 1/25 - 1/26 + ... + 1/29 - 1/30) . 120 + x . 3 = -4
(1/24 - 1/30) . 120 + x . 3 = -4
(5/120 - 4/120) + x . 3 = -4
=> 1/120 . 120 + x . 3 = -4
=> 1 + x . 3 = -4
=> x . 3 = -4 - 1
=> x . 3 = -5
=> x = -5/3
Vậy x = -5/3
\(a) \frac{4}{5}.x=\frac{8}{35}\)
\(\implies x= \frac{8}{35}:\frac{4}{5}\)
\(\implies x=\frac{8}{35}.\frac{5}{4}\)
\(\implies x=\frac{2}{7}\). Vậy \(x=\frac{2}{7}\)
\(b) \frac{3}{5}x-\frac{1}{2}=\frac{1}{7}\)
\(\implies \frac{3}{5}x=\frac{1}{7}+\frac{1}{2}\)
\(\implies \frac{3}{5}x=\frac{9}{14}\)
\(\implies x=\frac{9}{14}:\frac{3}{5}\)
\(\implies x=\frac{9}{14}.\frac{5}{3} \)
\(\implies x=\frac{15}{14}\). Vậy \(x=\frac{15}{14}\)
\(c) x-25\% x=0,5\)
\(\implies 75\% x=0,5\)
\(\implies \frac{3}{4}x=\frac{1}{2}\)
\(\implies x=\frac{1}{2}:\frac{3}{4}\)
\(\implies x=\frac{1}{2}.\frac{4}{3}\)
\(\implies x=\frac{2}{3}\). Vậy \(x=\frac{2}{3}\)
\(d) (\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}).120+x:\frac{1}{3}=-4\)
Có: \(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\)
\(=\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\)
\(=\frac{1}{24}-\frac{1}{30}\)
\(=\frac{1}{120}\)
Thay vào ta có: \(\frac{1}{120}.120+x:\frac{1}{3}=-4\)
\(\implies 1+x:\frac{1}{3}=-4\)
\(\implies x:\frac{1}{3}=-5\)
\(\implies x=-5.\frac{1}{3}\)
\(\implies x=\frac{-5}{3}\). Vậy \(x=\frac{-5}{3}\)
~ Hok tốt a~
\(\frac{4}{5}.x=\frac{8}{35}\) \(\frac{3}{5}x-\frac{1}{2}=\frac{1}{7}\)
\(x=\frac{8}{35}:\frac{4}{5}\) \(\frac{3}{5}x=\frac{1}{7}+\frac{1}{2}\)
\(x=\frac{8}{35}.\frac{5}{4}\) \(\frac{3}{5}x=\frac{9}{14}\)
\(x=\frac{2}{7}\) \(x=\frac{9}{14}:\frac{3}{5}\)
Vậy \(x=\frac{2}{7}\) \(x=\frac{9}{14}.\frac{5}{3}\)
\(x-25\%x=0.5\) \(x=\frac{15}{14}\)
\(x-\frac{1}{4}x=\frac{1}{2}\) Vậy \(x=\frac{15}{14}\)
\(x\left(1-\frac{1}{4}\right)=\frac{1}{2}\) \(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+x:\frac{1}{3}=-4\)
\(x=\frac{1}{2}:\frac{3}{4}\) \(\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+x:\frac{1}{3}=-4\) \(x=\frac{2}{3}\) \(\left(\frac{1}{24}-\frac{1}{30}\right).120+x:\frac{1}{3}=-4\)
Vậy \(x=\frac{2}{3}\) \(\frac{1}{120}.120+x:\frac{1}{3}=-4\)
\(1+x:\frac{1}{3}=-4\)
\(x:\frac{1}{3}=\left(-4\right)-1\)
\(x:\frac{1}{3}=-5\)
\(x=\left(-5\right).\frac{1}{3}\)
\(x=-\frac{5}{3}\)
Vậy \(x=-\frac{5}{3}\)
\((\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}).120+y:\frac{1}{3}=-4\)
Ta có: \(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\)
\(=\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\)
\(=\frac{1}{24}-\frac{1}{30}\)
\(=\frac{1}{120}\)
Thay vào ta có: \(\frac{1}{120}.120+y:\frac{1}{3}=-4\)
\(\implies 1+y:\frac{1}{3}=-4\)
\(\implies y:\frac{1}{3}=-5\)
\(\implies y=-5.\frac{1}{3}\)
\(\implies y=\frac{-5}{3}\). Vậy \(y=\frac{-5}{3}\)
~ Học tốt a~
\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+y:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+y:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{30}\right).120+y:\frac{1}{3}=-4\)
\(\Rightarrow\frac{1}{120}.120+y:\frac{1}{3}=-4\)
\(\Rightarrow1+y:\frac{1}{3}=-4\)
\(\Rightarrow y:\frac{1}{3}=-4-1\)
\(\Rightarrow y:\frac{1}{3}=-5\)
\(\Rightarrow y=-5.\frac{1}{3}\)
\(\Rightarrow y=\frac{-5}{3}\)
Vậy \(y=\frac{-5}{3}\)
_Chúc bạn học tốt_
=> 1/24 - 1/25 + 1/25 - 1/ 26 + .... + 1/29 - 1/30 + x : 1/3 = -4
=> 1/24 - 1/30 + x : 1/3 = - 4
=> 1/ 120 + x : 1/3 = -4
=> x : 1/3 = 481/120
=> x = 481/360
Vậy x = 481/360
\(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}+x:\frac{1}{3}=-4\)
\(\Rightarrow\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}+x\times3=-4\)
\(\Rightarrow\frac{1}{24}-\frac{1}{30}+3x=-4\)
\(\Rightarrow\frac{1}{120}+3x=-4\)
a: \(\Leftrightarrow\dfrac{8}{5}+\dfrac{2}{5}\cdot x=\dfrac{16}{5}\)
=>2/5x=8/5
=>x=4
b: \(\Leftrightarrow\left(\dfrac{1}{24}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{26}+...+\dfrac{1}{39}-\dfrac{1}{40}\right)\cdot120+\dfrac{1}{3}x=-4\)
\(\Leftrightarrow x\cdot\dfrac{1}{3}+2=-4\)
=>1/3x=-6
=>x=-18
c: =>2|x-1/3|=0,24-4/5=-0,56<0
\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+y:\frac{1}{3}=-4\)
\(\Leftrightarrow\)\(\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+y:\frac{1}{3}=-4\)
\(\Leftrightarrow\)\(\left(\frac{1}{24}-\frac{1}{30}\right).120+y:\frac{1}{3}=-4\)
\(\Leftrightarrow\)\(1+3y=-4\)
\(\Leftrightarrow\)\(3y=-5\)
\(\Leftrightarrow\)\(y=-\frac{5}{3}\)
Vậy...
Ta có :
\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+y:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+y.3=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{30}\right).120+y.3=-4\)
\(\Rightarrow\left(\frac{5}{120}-\frac{4}{120}\right).120+y.3=-4\)
\(\Rightarrow\frac{1}{120}.120+y.3=-4\)
\(\Rightarrow1+y.3=-4\)
\(\Rightarrow3y=-4-1\)
\(\Rightarrow3y=-5\)
\(\Rightarrow y=-\frac{5}{3}\)
Vậy \(y=-\frac{5}{3}\)
Lời giải:
\(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}=\frac{25-24}{24.25}+\frac{26-25}{25.26}+...+\frac{30-29}{29.30}\)
\(=\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\)
\(=\frac{1}{24}-\frac{1}{30}=\frac{1}{120}\)
Vậy:
\(\frac{1}{120}.120+x:\frac{1}{3}=-4\)
\(1+x:\frac{1}{3}=-4\)
\(x:\frac{1}{3}=-5\)
\(x=-15\)
\(\left(\dfrac{1}{24.25}+\dfrac{1}{25.26}+...+\dfrac{1}{29.30}\right).120+x:\dfrac{1}{3}=-4\)
\(\left(\dfrac{1}{24}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{26}+...+\dfrac{1}{29}-\dfrac{1}{30}\right).120+x:\dfrac{1}{3}=-4\)
\(\left(\dfrac{1}{24}-\dfrac{1}{30}\right).120+x:\dfrac{1}{3}=-4\)
\(\dfrac{1}{120}.120+x:\dfrac{1}{3}=-4\)
\(1+x:\dfrac{1}{3}=-4\)
\(x:\dfrac{1}{3}=-4-1\)
\(x:\dfrac{1}{3}=-5\)
\(x=-5.\dfrac{1}{3}\)
\(x=\dfrac{-5}{3}\)