Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x\in R\)
b)\(x\ne1\)
c) \(x\notin\left\{1;2\right\}\)
d) \(x\notin\left\{3;-3\right\}\)
e) \(x\ne1\)
f) \(x\notin\left\{2;3\right\}\)
\(A=\dfrac{x^2+x-2+x^2-x-2-4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}=\dfrac{2\left(x-2\right)\left(x+2\right)\left(x-3\right)}{2\left(x-2\right)\left(x+2\right)^2}=\dfrac{x-3}{x+2}\\ A\le0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\x+2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\x+2>0\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< x< 3;x\ne0\left(ĐKXD\right)\)
3) \(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(x+x-4\right)=0\Leftrightarrow2\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
a) đk: x khác 1; \(\dfrac{3}{2}\)
\(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)
= \(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)
= \(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)
b) Có \(\left|3x-2\right|+1=5\)
<=> \(\left|3x-2\right|=4\)
<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)
TH1: Thay x = 2 vào P, ta có:
P = \(\dfrac{-1}{2.2-3}=-1\)
TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:
P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)
c) Để P > 0
<=> \(\dfrac{-1}{2x-3}>0\)
<=> 2x - 3 <0
<=> x < \(\dfrac{3}{2}\) ( x khác 1)
d) P = \(\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)
<=> 2x - 3 = x2 - 6
<=> x2 - 2x - 3 = 0
<=> (x-3)(x+1) = 0
<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)
a) Ta có: \(A=\left(\dfrac{2x}{2x^2-5x+3}-\dfrac{5}{2x-3}\right):\left(3+\dfrac{2}{1-x}\right)\)
\(=\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{3\left(x-1\right)-2}{x-1}\)
\(=\dfrac{2x-5x+5}{2x-3}\cdot\dfrac{1}{3x-3-2}\)
\(=\dfrac{-3x+5}{2x-3}\cdot\dfrac{1}{3x-5}\)
\(=\dfrac{-1}{2x-3}\)
c) Để A>0 thì 2x-3<0
hay \(x< \dfrac{3}{2}\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x\ne1\end{matrix}\right.\)
Tham khảo:Cho biểu thức P= \((\frac{2x}{2x^2-5x+3}-\frac{5}{2x-3}):(3+\frac{2}{1-x})\) a) Rút gọn P b) Tính P với |3x-2|+1=5 c)... - Hoc24
a) ĐKXĐ:
Ta có:
\(2x^2+2x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x^2+x+\dfrac{1}{4}=0\)
hay \(x=-\dfrac{1}{2}\)
a: ĐKXĐ: x<>-1
Để \(\dfrac{x^3-x^2+2}{x-1}\in Z\) thì \(x^3-x^2+2⋮x-1\)
=>\(x^2\left(x-1\right)+2⋮x-1\)
=>\(2⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
b: ĐKXĐ: x<>2
Để \(\dfrac{x^3-2x^2+4}{x-2}\in Z\) thì \(x^3-2x^2+4⋮x-2\)
=>\(x^2\left(x-2\right)+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
c: ĐKXĐ: x<>-1/2
Để \(\dfrac{2x^3+x^2+2x+2}{2x+1}\in Z\) thì \(2x^3+x^2+2x+2⋮2x+1\)
=>\(x^2\left(2x+1\right)+\left(2x+1\right)+1⋮2x+1\)
=>\(1⋮2x+1\)
=>\(2x+1\in\left\{1;-1\right\}\)
=>\(2x\in\left\{0;-2\right\}\)
=>\(x\in\left\{0;-1\right\}\)
\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)-\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow2x^2+3x+1-2x^2-x+3=0\)
=>2x=-4
hay x=-2