Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\frac{3x+1}{5y+2}=\frac{6x+3}{10y+6}\)
\(\Leftrightarrow\left(3x+1\right).\left(10y+6\right)=\left(5y+2\right).\left(6x+3\right)\)
\(\Leftrightarrow30xy+18x+10y+6=30xy+15y+12x+6\)
\(\Leftrightarrow6x-5y=0\)
kHÔNG CÓ X,Y THÕA MÃN
cÂU B TƯƠNG TỰ
\(\frac{a}{b}=\frac{-3}{4}\Rightarrow a=-3k;b=4k\Rightarrow a+5b=17k=34\Rightarrow k=2\Rightarrow a=-6;b=8\)
Quân đây nhé
a) \(\frac{3x-2}{x+1}=\frac{6x-4}{2x+2}=\frac{6x-10}{2x+8}=\frac{6x-4-6x+10}{2x+2-2x-8}=\frac{6}{-6}=-1\)
\(\Rightarrow\)\(3x-2=-x-1\)\(\Leftrightarrow\)\(x=\frac{1}{4}\)
b) \(\frac{x}{y}=\frac{-3}{y}\)\(\Leftrightarrow\)\(\frac{x}{-3}=\frac{y}{4}\)\(\Leftrightarrow\)\(\frac{x}{-3}=\frac{5y}{20}=\frac{x+5y}{-3+20}=\frac{34}{17}=2\)
\(\Rightarrow\)\(\hept{\begin{cases}x=2.\left(-3\right)=-6\\y=2.4=8\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
ta co 3x-2/5 =5y+8 /9 (1)
ap dung tinh chat day ti so bang nhau ta co
3x-2/5=5y+8/ 9=3x-2+5y+8 /9 =3x+5y+6 /14 =3x+5y+6 /7y
=> 14=7y=>y= 2
thay y=2 vao (1) ta co 3x-2 /5 = 5.2+8 /9= 18/9=2 =>3x-2 /5 =2
=>3x-2 =10 =>3x =12 =>x =4
a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)
=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)
Vậy ...
b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)
Vậy ...
Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)
Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .
b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha
Hok tốt
a) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1+3-y}{2005+2006}=\frac{2+x-y}{4011}=\frac{2+4009}{4011}=1\)
=> \(\begin{cases}x-1=2005\\3-y=2006\end{cases}\)\(\Leftrightarrow\begin{cases}x=2006\\y=-2003\end{cases}\)
b) Có: \(3x=y\Rightarrow\frac{x}{1}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tc của dãy tỉ số bằng nahu ta có:
\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x+7y+8z}{6\cdot4+7\cdot12+8\cdot15}=\frac{456}{228}=2\)
=> \(\begin{cases}x=8\\y=24\\z=30\end{cases}\)
c) Có: \(x-24=y\Rightarrow x-y=24\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)
=> \(\begin{cases}x=42\\y=18\end{cases}\)
=> (6x-2)*5y=(3x+1)*(8y-6)
bn làm nốt nhé