Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+32}{11}=\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
\(\Rightarrow\frac{x+32}{11}+\frac{x+23}{12}-\frac{x+38}{13}-\frac{x+27}{14}=0\)
\(\Rightarrow\left(\frac{x+32}{11}-\frac{x+38}{13}\right)+\left(\frac{x+23}{12}-\frac{x+27}{14}\right)=0\)
\(\Rightarrow\frac{2x-2}{11.13}+\frac{2x-2}{12.14}=0\)
\(\Rightarrow\frac{2x-2}{1}.\left(\frac{1}{11.13}+\frac{1}{12.14}\right)=0\)
vì \(\left(\frac{1}{11.13}+\frac{1}{12.14}\right)\ne0\)
mà \(\frac{2x-2}{1}.\left(\frac{1}{11.13}+\frac{1}{12.14}\right)=0\)
=> \(\frac{2x-2}{1}=0\Rightarrow2x-2=0\Rightarrow2x=2\Rightarrow x=1\)
\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
\(\Rightarrow\)\(\frac{x+32}{11}-3+\frac{x+23}{12}-2=\frac{x+38}{13}-3+\frac{x+27}{14}-2\)
\(\Rightarrow\frac{x-1}{11}+\frac{x-1}{12}=\frac{x-1}{13}+\frac{x-1}{14}\)
\(\Rightarrow\frac{x-1}{11}+\frac{x-1}{12}-\frac{x-1}{13}-\frac{x-1}{14}=0\)
\(\Rightarrow\left(x-1\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Rightarrow x-1=0\)(Vì \(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\))
\(\Rightarrow x=1\)
Vậy:x=1
\(\frac{x+32}{11}+\frac{x+33}{12}=\frac{x+34}{13}+\frac{x+35}{14}\)
\(\Leftrightarrow\left(\frac{x+32}{11}-1\right)+\left(\frac{x+33}{12}-1\right)=\left(\frac{x+34}{13}-1\right)+\left(\frac{x+35}{14}-1\right)\)
\(\Leftrightarrow\frac{x-21}{11}+\frac{x-21}{12}=\frac{x-21}{13}+\frac{x-21}{14}\)
\(\Leftrightarrow\left(x-21\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)
\(\Rightarrow x-21=0\Rightarrow x=21\)
\(\frac{x+32}{11}+\frac{x+33}{12}=\frac{x+34}{13}+\frac{x+35}{14}\)
\(\Leftrightarrow\left(\frac{x+32}{11}-1\right)+\left(\frac{x+33}{12}-1\right)=\left(\frac{x+34}{13}-1\right)+\left(\frac{x+35}{14}-1\right)\)( trừ cả hai vế cho 2 )
\(\Leftrightarrow\frac{x-21}{11}+\frac{x-21}{12}=\frac{x-21}{13}+\frac{x-21}{14}\)
\(\Leftrightarrow\frac{x-21}{11}+\frac{x-21}{12}-\frac{x-21}{13}-\frac{x-21}{14}=0\)
\(\Leftrightarrow\left(x-21\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà \(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
\(\Rightarrow x-21=0\)
\(\Leftrightarrow x=21\)
Vậy \(x=21\)
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
\(3x\left(x-1\right)+5\left(2-x\right)=3x^2-7x+6\) \(6\)
<=> \(3x^2-3x+10-5x=3x^2-7x+6\)
<=> \(-x=-4\)
<=> \(x=4\)
\(\left(x+2\right)^2=\frac{1}{2}-\frac{1}{3}\)
<=> \(\left(x+2\right)^2=\frac{1}{6}\)
<=> \(\hept{\begin{cases}x+2=\sqrt{\frac{1}{6}}\\x+2=-\sqrt{\frac{1}{6}}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\sqrt{\frac{1}{6}}-2\\x=-\sqrt{\frac{1}{6}}-2\end{cases}}\)