K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

(x2-4)(x2-10)=72

=>x4-14x2+40=72

=>x4-14x2-32=0

=>(x-4)(x3+4x2+2x+8)=0

=>(x-4)(x+4)(x2+2)=0

=> (x-4) = 0 hoặc (x+4)=0 hoặc (x2+2)=0

=> x = 4 hoặc x=-4

x=4 hoặc x=-4

a: Đặt \(a=x^2+x\)

Phương trình ban đầu sẽ trở thành \(a^2+4a-12=0\)

=>\(a^2+6a-2a-12=0\)

=>a(a+6)-2(a+6)=0

=>(a+6)(a-2)=0

=>\(\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)

=>\(x^2+x-2=0\)(Vì \(x^2+x+6=\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}>0\forall x\))

=>\(\left(x+2\right)\left(x-1\right)=0\)

=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

b:

Sửa đề: \(\left(x^2+2x+3\right)^2-9\left(x^2+2x+3\right)+18=0\)

Đặt \(b=x^2+2x+3\)

Phương trình ban đầu sẽ trở thành \(b^2-9b+18=0\)

=>\(b^2-3b-6b+18=0\)

=>b(b-3)-6(b-3)=0

=>(b-3)(b-6)=0

=>\(\left(x^2+2x+3-3\right)\left(x^2+2x+3-6\right)=0\)

=>\(\left(x^2+2x\right)\left(x^2+2x-3\right)=0\)

=>\(x\left(x+2\right)\left(x+3\right)\left(x-1\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x+2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=-3\\x=1\end{matrix}\right.\)

c: \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

=>\(\left(x^2-4\right)\left(x^2-10\right)=72\)

=>\(x^4-14x^2+40-72=0\)

=>\(x^4-14x^2-32=0\)

=>\(\left(x^2-16\right)\left(x^2+2\right)=0\)

=>\(x^2-16=0\)(do x2+2>=2>0 với mọi x)

=>x2=16

=>x=4 hoặc x=-4

5 tháng 8 2016

\(\left(x^2-4\right)\left(x^2-10\right)=72\)

<=> \(x^4-14x^2+40-72=0\)

<=> \(x^4-14x^2-32=0\)

<=> \(\left(x^2-16\right)\left(x^2+2\right)=0\)

<=> \(\left[\begin{array}{nghiempt}x^2-16=0\\x^2+2=0\end{array}\right.\)=> x=\(\pm\)4

vậy tập nghiệm S={4;-4}

5 tháng 8 2016

\(\left(x^2-4\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow x^4-10x^2-4x^2+40=72\)
\(\Leftrightarrow x^4-14x^2+40-72=0\)
\(\Leftrightarrow x^4-14x^2-32=0\)
\(\Leftrightarrow x^4+2x^2-16x^2-32=0\)
\(\Leftrightarrow x^2\left(x^2+2\right)-16\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-4^2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x-4\right)\left(x+4\right)=0\left(1\right)\)
\(Có:x^2\ge0\)\(\text{ với mọi x}\)
\(\Rightarrow x^2+2\ge0+2=2\ne0\text{ với mọi x}\)
\(\left(1\right)\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x+4=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-4\end{array}\right.\)
\(\text{Vậy }x=\pm4\)
 

e) Ta có: \(E=\left(3x+2\right)\left(3x-5\right)\left(x-1\right)\left(9x+10\right)+24x^2\)

\(=\left(9x^2-15x+6x-10\right)\left(9x^2+10x-9x-10\right)+24x^2\)

\(=\left(9x^2-10-9x\right)\left(9x^2-10+x\right)+24x^2\)

\(=\left(9x^2-10\right)^2-8x\left(9x^2-10\right)-9x^2+24x^2\)

\(=\left(9x^2-10\right)^2-8x\left(9x^2-10\right)+15x^2\)

\(=\left(9x^2-10\right)^2-3x\left(9x^2-10\right)-5x\left(9x^2-10\right)+15x^2\)

\(=\left(9x^2-10\right)\left(9x^2-3x-10\right)-5x\left(9x^2-10-3x\right)\)

\(=\left(9x^2-3x-10\right)\left(9x^2-5x-10\right)\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2023

1. Đặt $x^2+x=a$ thì pt trở thành:

$a^2+4a=12$
$\Leftrightarrow a^2+4a-12=0$

$\Leftrightarrow  (a-2)(a+6)=0$

$\Leftrightarrow a-2=0$ hoặc $x+6=0$

$\Leftrightarrow x^2+x-2=0$ hoặc $x^2+x+6=0$

Dễ thấy $x^2+x+6=0$ vô nghiệm.

$\Rightarrow x^2+x-2=0$

$\Leftrightarrow (x-1)(x+2)=0$

$\Leftrightarrow x=1$ hoặc $x=-2$

AH
Akai Haruma
Giáo viên
24 tháng 8 2023

2.

$x(x-1)(x+1)(x+2)=24$
$\Leftrightarrow [x(x+1)][(x-1)(x+2)]=24$

$\Leftrightarrow (x^2+x)(x^2+x-2)=24$

$\Leftrightarrow a(a-2)=24$ (đặt $x^2+x=a$)

$\Leftrightarrow a^2-2a-24=0$

$\Leftrightarrow (a+4)(a-6)=0$

$\Leftrightarrow a+4=0$ hoặc $a-6=0$

$\Leftrightarrow x^2+x+4=0$ hoặc $x^2+x-6=0$

Nếu $x^2+x+4=0$

$\Leftrightarrow (x+\frac{1}{2})^2=\frac{1}{4}-4<0$ (vô lý - loại)

Nếu $x^2+x-6=0$

$\Leftrightarrow (x-2)(x+3)=0$

$\Leftrightarrow x-2=0$ hoặc $x+3=0$
$\Leftrightarrow x=2$ hoặc $x=-3$

31 tháng 10 2021

a: \(A=x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)

\(=-x-15\)

\(=-\left(-1\right)-15=1-15=-14\)

27 tháng 9 2021

a) \(=x^4-14x^2+40-72=x^4-14x^2-32=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)

b) \(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1=\left(x^2+5x\right)^2+2\left(x^2+5x\right)+1=\left(x^2+5x+1\right)^2\)

c) \(=x^4+3x^3-3x^2+3x^3+9x^2-9x+x^2+3x-3-5=x^4+6x^3+7x^2-6x-8=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

a: Ta có: \(\left(x^2-4\right)\left(x^2-10\right)-72\)

\(=x^4-14x^2-32\)

\(=\left(x^2-16\right)\left(x^2+2\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)

b: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x^2+5x+6\right)\left(x^2+5x+4\right)+1\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24+1\)

\(=\left(x^2+5x+1\right)^2\)