K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương pháp:

Biểu thức �(�) xác định ⇔�(�)≥0.

Cách giải:

a) �−3                                                                  

Biểu thức �−3  xác định ⇔�−3≥0 ⇔�≥3.

Vậy �≥3 thì biểu thức �−3 xác định.

b) −22�−1 

Biểu thức −22�−1 xác định ⇔−22�−1≥0 ⇔2�−1<0 ⇔�<12

Vậy với �<12 thì biểu thức −22�−1 xác định.

4 tháng 9 2023

a, \(\sqrt{x-3}\) 

điều kiện để biểu thức xác định là: 

    \(x-3\) ≥ 0

    \(x\ge\) 3

b, \(\sqrt{-2x^2-1}\)

Điều kiện để biểu thức trong căn xác định là:

     - 2\(x^2\) - 1 ≥ 0 

     ta có \(x^2\) ≥ 0 ∀ \(x\) 

      ⇒ -2\(x^2\) ≤ 0 ∀ \(x\) ⇒ -2\(x^2\) - 1 ≤ 0 ∀ \(x\)

Vậy không có giá trị nào của \(x\) để biểu thức trong căn có nghĩa hay 

\(x\in\) \(\varnothing\) 

       

 

19 tháng 6 2021

a) Để \(\sqrt{\left|x\right|-1}\) xác định 

<=> \(\left|x\right|\ge1\)

<=> \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)

b) Để \(\sqrt{-\left|x+5\right|}\) xác định

<=> \(-\left|x+5\right|\ge0\)

Mà \(\left|x+5\right|\ge0\left(\forall x\right)\)

<=> x + 5 = 0 <=> x = -5

c) Để \(\sqrt{\left|x-1\right|-3}\) xác định

<=> \(\left|x-1\right|\ge3\)

<=> \(\left[{}\begin{matrix}x-1\ge3< =>x\ge4\\x-1\le-3< =>x\le-2\end{matrix}\right.\)

19 tháng 6 2021

`a)đk:|x|-1>=0`

`<=>|x|>=1`

`<=>` \(\left[ \begin{array}{l}x \ge 1\\x\le -1\end{array} \right.\) 

`b)đk:-|x+5|>=0`

`<=>|x+5|<=0`

Mà `|x+5|>=0`

`<=>|x+5|=0`

`<=>x=-5`

`c)đk:|x-1|-3>=0`

`|x-1|>=3`

`<=>` \(\left[ \begin{array}{l}x-1 \ge 3\\x-1 \le -3\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x \ge 4\\x \le -2\end{array} \right.\) 

24 tháng 11 2021

\(a,ĐK:x>0;x\ne9\\ b,A=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\\ A=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\\ c,A>\dfrac{2}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+3}-\dfrac{2}{5}>0\\ \Leftrightarrow\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{5}>0\\ \Leftrightarrow\dfrac{2-\sqrt{x}}{5\left(\sqrt{x}+3\right)}>0\\ \Leftrightarrow2-\sqrt{x}>0\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}< 2\Leftrightarrow0< x< 4\)

a: ĐKXĐ: x>=0; x<>1

\(P=\dfrac{-3+\sqrt{x}-1}{x-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}-4}{\sqrt{x}-1}\)

b: Để P=5/4 thì \(\dfrac{\sqrt{x}-4}{\sqrt{x}-1}=\dfrac{5}{4}\)

=>\(5\sqrt{x}-5=4\sqrt{x}-16\)

=>căn x=-11(loại)

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b) Thay x=0 vào A, ta được:

\(A=\dfrac{15\cdot\sqrt{0}-11}{0+2\sqrt{0}-3}-\dfrac{3\sqrt{0}-2}{\sqrt{0}-1}-\dfrac{2\sqrt{0}+3}{\sqrt{0}+3}\)

\(=\dfrac{-11}{-3}-\dfrac{-2}{-1}-\dfrac{3}{3}\)

\(=\dfrac{11}{3}-2-1\)

\(=\dfrac{11}{3}-\dfrac{9}{3}=\dfrac{2}{3}\)

22 tháng 3 2021

Thank

31 tháng 10 2021

\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)

2 tháng 9 2019

AI GIẢI HỘ MÌNH K CHO Ạ!!!

13 tháng 9 2019

1)  a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)

Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)

Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)

Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)

Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)

c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)

\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)

\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)

7 tháng 2 2022

a) \(\sqrt{3x-4}\) xác định \(\Leftrightarrow3x-4\ge0\Leftrightarrow3x\ge4\Leftrightarrow x\ge\dfrac{4}{3}\)

b) \(\dfrac{1}{\sqrt{x-4}}\) xác định \(\Leftrightarrow x-4>0\Leftrightarrow x>4\)

7 tháng 2 2022

a, đkxđ : x >= 4/3 

b, đkxđ : x > 4