Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1> 3x(x-2)-2x(2x-1)=(1-x)(1+x)
⇔\(3x^2\)-6x-\(4x^2\)+2x=1-\(x^2\)
⇔-1\(x^2\) - 4x= 1- \(x^2\)
⇔ -1\(x^2\) -4x+ \(x^2\) = 1
⇔-4x=1
⇔ x = \(\dfrac{-1}{4}\)
\(a,4x^2-\left(3x+1\right)\left(2x-1\right)=2\left(x-3\right)^2\)
\(\Leftrightarrow4x^2-\left(6x^2-3x+2x-1\right)=2\left(x^2-6x+9\right)\)
\(\Leftrightarrow4x^2-6x^2+x+1-2x^2+12x-18=0\)
\(\Leftrightarrow-4x^2+13x-17=0\)
\(\Leftrightarrow-4\left(x^2-\dfrac{13}{4}x+\dfrac{169}{64}\right)-\dfrac{103}{16}=0\)
\(\Leftrightarrow-4\left(x-\dfrac{13}{8}\right)^2=\dfrac{103}{16}\)
\(\Leftrightarrow\left(x-\dfrac{13}{8}\right)^2=\dfrac{-103}{64}\Rightarrow\) pt vô nghiệm
\(b,\left(5x-1\right)\left(x+1\right)-\left(2x-1\right)\left(2x+1\right)=x.\left(x+1\right)\)\(\Leftrightarrow5x^2+5x-x-1-\left(4x^2-1\right)=x^2+x\)
\(\Leftrightarrow5x^2+5x-x-1-4x^2+1-x^2-x=0\) \(\Leftrightarrow3x=0\Rightarrow x=0\)
\(c,7x^2-\left(2x-3\right)^2=1+3\left(x+2\right)^2\)
\(\Leftrightarrow7x^2-\left(4x^2-12x+9\right)=1+3\left(x^2+4x+4\right)\)
\(\Leftrightarrow7x^2-4x^2+12x-9=1+3x^2+12x+12\)\(\Leftrightarrow7x^2-4x^2+12x-9-1-3x^2-12x-12=0\)\(\Leftrightarrow-22=0\) ( vô lí)
Vậy phương trình vô nghiệm
1: \(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-2\left(4x+3\right)^2+8\left(x+3\right)^2\)
\(=24x^2+2-2\left(16x^2+24x+9\right)+8\left(x^2+6x+9\right)\)
\(=24x^2+2-32x^2-48x-18+8x^2+48x+72\)
=56
2: \(=\left(4x^2+4x+1\right)\left(x-1\right)-2\left(x^3-6x^2+12x-8\right)+x\left(3-2x\right)\left(3+x\right)-\left(3x-3\right)^2\)
\(=4x^3-3x-1-2x^3+12x^2-24x+16+x\left(9-3x-2x^2\right)-\left(3x-3\right)^2\)
\(=2x^3+12x^2-27x+15+9x-3x^2-2x^3-9x^2+18x-9\)
\(=6\)
a)\((x^2- 4).(x^2 - 10) = 72 Đặt x^2 - 7 = a(1), ta có (a+3)(a-3)=72 a^2-9=72 a^2=81 a=+-9 xét 2 trường hợp a = 9 và -9 khi thay vào (1) ta có..... tự lm nốt nha \)
b) nhóm x+1 vs x+4 và x+2 vs x+3 ta sẽ có (x2+5x+4)(x2+5x+6)(x+5)=40
\(a,\left(2x+1\right)^2-3x^2+4=\left(1-x\right)\left(1+x\right)\)
\(\Leftrightarrow4x^2+4x+1-3x^2+4=1-x^2\)
\(\Leftrightarrow4x^2+4x+1-3x^2+4-1+x^2=0\)
\(\Leftrightarrow2x^2+4x+4=0\)
\(\Leftrightarrow2\left(x^2+2x+1\right)+2=0\)
\(\Leftrightarrow2\left(x+1\right)^2=-2\)
\(\Leftrightarrow\left(x+1\right)^2=-1\Rightarrow\) pt vô nghiệm
\(b,\left(4x-3\right)\left(4x+3\right)-2\left(x+2\right)^2=14x^2\)
\(\Leftrightarrow16x^2-9-2\left(x^2+4x+4\right)-14x^2=0\)
\(\Leftrightarrow16x^2-9-2x^2-8x-8-14x^2=0\)
\(\Leftrightarrow-8x-17=0\)
\(\Leftrightarrow-8x=17\)
\(\Leftrightarrow x=\dfrac{-17}{8}\)
\(c,\left(2x-1\right)\left(x+1\right)-x^2+1=\dfrac{1}{2}\left(x-1\right)^2\)
\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}\left(x^2-2x+1\right)\)
\(\Leftrightarrow2x^2+2x-x-1-x^2+1-\dfrac{1}{2}x^2+x-\dfrac{1}{2}=0\)\(\Leftrightarrow\dfrac{1}{2}x^2+2x-\dfrac{1}{2}=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(x^2+4x+4\right)-\dfrac{5}{2}=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(x+2\right)^2=\dfrac{5}{2}\)
\(\Rightarrow\left(x+2\right)^2=5\)
\(\Rightarrow\left[{}\begin{matrix}x+2=-\sqrt{5}\\x+2=\sqrt{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\sqrt{5}-2\\x=\sqrt{5}-2\end{matrix}\right.\)
a) \(\left(2x+1\right)^2-3x^2+4=\left(1-x\right)\left(1+x\right)\)
\(\Leftrightarrow4x^2+4x+1-3x^2+4=1-x^2\)
\(\Leftrightarrow4x^2+4x+1-3x^2+4-1+x^2=0\)
\(\Leftrightarrow2x^2+4x+4=0\Leftrightarrow\left(\sqrt{2}x\right)^2+2.\sqrt{2}.\sqrt{2}x+\left(\sqrt{2}\right)^2+2=0\) \(\Leftrightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+2=0\)
ta có : \(\left(\sqrt{2}x+\sqrt{2}\right)^2\ge0\Rightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+2\ge2>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
vậy phương trình vô nghiệm
b) \(\left(4x-3\right)\left(4x+3\right)-2\left(x+2\right)^2=14x^2\)
\(\Leftrightarrow16x^2-9-2\left(x^2+4x+4\right)=14x^2\)
\(\Leftrightarrow16x^2-9-2x^2-8x-8=14x^2\)
\(\Leftrightarrow16x^2-9-2x^2-8x-8-14x^2=0\)
\(\Leftrightarrow-8x-17=0\Leftrightarrow-8x=17\Leftrightarrow x=\dfrac{-17}{8}\)
vậy \(x=\dfrac{-17}{8}\)
c) \(\left(2x-1\right)\left(x+1\right)-x^2+1=\dfrac{1}{2}\left(x-1\right)^2\)
\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}\left(x^2-2x+1\right)\)
\(\Leftrightarrow2x^2+2x-x-1-x^2+1=\dfrac{1}{2}x^2-x+\dfrac{1}{2}\)
\(\Leftrightarrow2x^2+2x-x-1-x^2+1-\dfrac{1}{2}x^2+x-\dfrac{1}{2}=0\)
\(\Leftrightarrow\dfrac{1}{2}x^2+2x-\dfrac{1}{2}=0\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x\right)^2+2.\sqrt{2}.\dfrac{\sqrt{2}}{2}x+\left(\sqrt{2}\right)^2-\dfrac{5}{2}=0\)
\(\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x+\sqrt{2}\right)^2-\dfrac{5}{2}=0\Leftrightarrow\left(\dfrac{\sqrt{2}}{2}x+\sqrt{2}\right)^2=\dfrac{5}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{2}}{2}x+\sqrt{2}=\sqrt{\dfrac{5}{2}}\\\dfrac{\sqrt{2}}{2}x+\sqrt{2}=-\sqrt{\dfrac{5}{2}}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{2}}{2}x=\sqrt{\dfrac{5}{2}}-\sqrt{2}=\dfrac{\sqrt{10}-2\sqrt{2}}{2}\\\dfrac{\sqrt{2}}{2}x=-\sqrt{\dfrac{5}{2}}-\sqrt{2}=-\dfrac{\sqrt{10}+2\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2+\sqrt{5}\\x=-2-\sqrt{5}\end{matrix}\right.\)
vậy \(x=-2+\sqrt{5};x=-2-\sqrt{5}\)
1. (2x - 3) . (2x+3) - 4 . (x+ 2)2 = 6
[ ( 2x )2 - 32 ] - 4 . ( x2 + 2.x.2 + 22) = 6
4x2 - 9 - 4 . ( x2 + 4x + 4) = 6
4x2 - 9 - 4x2 - 16x - 16 = 6
-16x -25 = 6
x = \(-\dfrac{31}{16}\)
a, \(\left(3x+2\right)^2-\left(2x-1\right)\left(2x+1\right)=5\left(x-2\right)^2\)
\(\Rightarrow9x^2+12x+4-\left(4x^2-1\right)=5\left(x^2-4x+4\right)\)
\(\Rightarrow9x^2+12x+4-4x^2-1=5x^2-20x+20\)
\(\Rightarrow9x^2-4x^2-5x^2+12x+20x=20+1-4\)
\(\Rightarrow32x=17\Rightarrow x=\dfrac{17}{32}\)
b, \(\left(x+2\right)^2-\left(x+3\right)\left(x-1\right)=5x\)
\(\Rightarrow x^2+4x+4-\left(x^2-x+3x-3\right)=5x\)
\(\Rightarrow x^2+4x+4-x^2+x-3x+3-5x=0\)
\(\Rightarrow-3x=-3-4\Rightarrow-3x=-7\Rightarrow x=\dfrac{7}{3}\)
c, \(\left(3x-1\right)\left(x-3\right)+\left(x-2\right)^2=\left(2x-5\right)^2\)
\(\Rightarrow3x^2-9x-x+3+x^2-4x+4=4x^2-20x+25\)
\(\Rightarrow3x^2+x^2-4x^2-9x-x-4x+20x=25-3-4\)
\(\Rightarrow6x=18\Rightarrow x=3\)
Chúc bạn học tốt!!!
1) \(\left(x+1\right)^3-\left(x-1\right)^3=6.\left(x+2\right)^2-9\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-3x^2+3x-1\right)=6\left(x^2+4x+4\right)-9\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=6x^2+24x+24-9\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2-24x-24+9=0\)
\(\Leftrightarrow-24x-13=0\Leftrightarrow-24x=13\Leftrightarrow x=\dfrac{-13}{24}\) vậy \(x=\dfrac{-13}{24}\)
2) \(\left(2x-1\right).\left(4x^2+2x+1\right)+\left(1-2x\right)^3=3.\left(2x+3\right)^2\)
\(\Leftrightarrow8x^3+4x^2+2x-4x^2-2x-1+1-6x+12x^2-8x^3=3\left(.4x^2+12x+9\right)\)
\(\Leftrightarrow8x^3+4x^2+2x-4x^2-2x-1+1-6x+12x^2-8x^3=12x^2+36x+27\)
\(\Leftrightarrow8x^3+4x^2+2x-4x^2-2x-1+1-6x+12x^2-8x^3-12x^2-36x-27=0\)
\(\Leftrightarrow-42x-27=0\Leftrightarrow-42x=27\Leftrightarrow x=\dfrac{-27}{42}\) vậy \(x=\dfrac{-27}{42}\)
Sửa đề: \(\left(2x^2+1\right)\left(3x^2-1\right)-\left(4x^2-3\right)\left(x^2+1\right)=x^2\left(2x^2+1\right)\)
\(\Leftrightarrow6x^4-2x^2+3x^2-1-\left(4x^4+4x^2-3x^2-3\right)=2x^4+x^2\)
\(\Leftrightarrow6x^4+x^2-1-4x^4-x^2+3-2x^4-x^2=0\)
\(\Leftrightarrow-x^2+2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)