Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm cho bạn 1 con thôi dài quá trôi hết màn hình:
c) có vẻ khó nhất (con khác tương tự)
đặt 2x+2=t=> x+1=t/2
\(\left(t-1\right).\left(\frac{t}{2}\right)^{^2}.\left(t+1\right)=18\Leftrightarrow\left(t^2-1\right)t^2=4.18\)
\(t^4-t^2=4.18\Leftrightarrow y^2-2.\frac{1}{2}y+\frac{1}{4}=4.18+\frac{1}{4}=\frac{16.18+1}{4}=\left(\frac{17}{2}\right)^2\)
<=> \(\left(y-\frac{1}{2}\right)^{^2}=\left(\frac{17}{2}\right)^2\Rightarrow\left[\begin{matrix}y=\frac{1}{2}-\frac{17}{2}=-8\\y=\frac{1}{2}+\frac{17}{2}=9\end{matrix}\right.\Rightarrow\left[\begin{matrix}2x+2=-8\Rightarrow x=-5\\2x+2=9\Rightarrow x=\frac{7}{2}\end{matrix}\right.\)
d: Ta có: \(4x\left(2x+3\right)-8x\left(x+4\right)\)
\(=8x^2+12x-8x^2-32x\)
=-20x
e: Ta có: \(2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)
\(=10x^2+4x+6x^2-2x-9x+3\)
\(=16x^2-7x+3\)
f: Ta có: \(x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3+4x^2+4x-x^3-3x^2-3x-1+3x^2-3\)
\(=4x^2+x-4\)
\(\frac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)
\(=\frac{x^2\left(3x^2-2x+1\right)-2x\left(3x^2-2x+1\right)-5\left(3x^2-2x+1\right)}{3x^2-2x+1}\)
\(=\frac{\left(3x^2-2x+1\right)\cdot\left(x^2-2x-5\right)}{3x^2-2x+1}\)
\(=x^2-2x-5\)
\(\frac{2x^3-9x^2+19x-15}{x^2-3x+5}\)
\(=\frac{2x\left(x^2-3x+5\right)-3\left(x^2-3x+5\right)}{x^2-3x+5}\)
\(=\frac{\left(x^2-3x+5\right)\left(2x-3\right)}{x^2-3x+5}\)
\(=2x-3\)
a)\(3\left(x^4+x^2+1\right)=\left(x^2+x+1\right)^2\)
Cauchy-schwarz:
\(\left(1+1+1\right)\left(x^4+x^2+1\right)\ge\left(x^2+x+1\right)^2\)
"="<=>\(x=1\)
b)\(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(x^2+x-1=t\)
\(\Rightarrow\left(t-1\right)\left(t+1\right)=24\)
\(\Leftrightarrow t^2-25=0\)
\(\Leftrightarrow t=\pm5\)
t=5\(\Leftrightarrow x^2+x-1=5\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
t=-5<=> pt vô nghiệm
a) \(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(= \left(x^2+8x+7\right)\left(x^2+5x+3x+15\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+7=t\), ta đc:
⇒ \(t\left(t+8\right)+15\) = \(t^2+8t+15=\left(t+5\right)\left(t+3\right)\)
b)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x+2=t\)
⇒\(t\left(t-3\right)-4\)=\(\left(t-4\right)\left(t+1\right)\)
c) tương tự nha
Giải:
a) \(\left(3x-1\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(3x-1+2x+3\right)\left(3x-1-2x-3\right)=0\)
\(\Leftrightarrow\left(5x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{5}\\x=4\end{matrix}\right.\)
Vậy ...
b) \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
\(\Leftrightarrow48x^2-20x-12x+5+3x-7-48x^2+112x=81\)
\(\Leftrightarrow83x-2=81\)
\(\Leftrightarrow83x=83\)
\(\Leftrightarrow x=1\)
Vậy ...