Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+1\right)+4=x^2+5\)
\(x^2\ge0\) với mọi x đẳng thức chỉ khi x=0
\(x^2+5\ge5\) => GTNN là 5 khi x=0
Để F là giá trị nhỏ nhất thì x phải đạt giá trị nhỏ nhất là 0
=>F=(x2 + 1)+4=(02 +1)+4
=(1+1)+4
=2+4
=6 Vậy F nhận giá trị nhỏ nhất là 6
Ta có
x ≥ 0 √ x ∈ Z
=> x2 + 1 ≥ 1
=> (x2 + 1)2 ≥ 12 = 1
=> F = (x2 + 1)2 + 4 ≥ 1 + 4 = 5
=> F = (x2 + 1)2 + 4 ≥ 5
Dấu "=" xảy ra khi x2 = 0 => x = 2
Vậy GTNN của F là 5 tại x = 0
Chỗ kia mình ấn nhầm ra bạn
Dấu "=" xảy ra khi x2 = 0 => x = 0
a)
1/2 . | 4 − 3 · x | − 2 = 1
1/2 . | 4 − 3 · x | = 1 + 2
1/2 . | 4 − 3 · x | = 3
| 4 − 3 · x | = 3 : 1/2
| 4 − 3 · x | = 6
Th 1 : 4 - 3 .x = 6
=> 3 . x = 4 - 6
[ Loại . Vì x thuộc Z ( vì lớp 6 ) ]
Th2 : 4 - 3 . x = ( - 6)
3 . x = 4 - ( - 6 )
3 . x = 4 + 6
3 . x = 10
x = 10 : 3 = 10/3
Vậy X = 10/3
a)để A là phân số => x khác 1/2
b) Để A∈∈Z
=> 2x+5⋮2x−12x+5⋮2x−1
ta có : 2x-1⋮⋮2x-1
=>(2x+5)-(2x-1)⋮⋮2x-1
=>6⋮⋮2x-1
=> 2x-1∈∈Ư(6)={±±1;±±2;±±3;±±6}
ta có bảng :
2x-1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 1 | 0 | 3232 | −12−12 | 2 | -1 | 7272 | −52−52 |
Mà A ∈∈Z
Vậy x∈∈{±±1;0;2}
c) ta có :A= 2x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−12x−52x−1=2x−1−42x−1=2x−12x−1−42x−1=1−42x−1
để A lớn nhất
=>1−42x−11−42x−1lớn nhất
=> 2x-1<0 và 2x-1 lớn nhất
=> 2x-1=-1
=>2x=0
=>x=0
Vậy tại x =0 thì A đạt giá trị lớn nhất
Bài 1:
A = 3(x + 1)2 + 5
Ta có: (x + 1)2 \(\ge\) 0 Với mọi x
\(\Rightarrow\) 3(x + 1)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 3(x + 1)2 + 5 \(\ge\) 5 với mọi x
Hay A \(\ge\) 5
Dấu "=" xảy ra khi và chỉ khi x + 1 = 5 hay x = -1
Vậy...
B = 2|x + y| + 3x2 - 10
Ta có: 2|x + y| \(\ge\) 0 với mọi x, y
3x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2|x + y| + 3x2 - 10 \(\ge\) -10 với mọi x,y
Dấu "=" xảy ra khi và chỉ khi x + y = 0; x = 0
\(\Rightarrow\) x = y = 0
Vậy ...
C = 12(x - y)2 + x2 - 6
Ta có: 12(x - y)2 \(\ge\) 0 với mọi x; y
x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 12(x - y)2 + x2 - 6 \(\ge\) -6 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x = y = 0
Phần D ko rõ đầu bài nha vì D luôn có một giá trị duy nhất
Bài 2:
Phần A ko rõ đầu bài!
B = 3 - (x + 1)2 - 3(x + 2y)2
Ta có: -(x + 1)2 \(\le\) 0 với mọi x
-3(x + 2y)2 \(\le\) 0 với mọi x, y
\(\Rightarrow\) 3 - (x + 1)2 - 3(x + 2y)2 \(\le\) 3 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x = 2y; x + 1 = 0
\(\Rightarrow\) x = -1; y = \(\dfrac{-1}{2}\)
Vậy ...
C = -12 - 3|x + 1| - 2(y - 1)2
Ta có: -3|x + 1| \(\le\) 0 với mọi x
-2(y - 1)2 \(\le\) 0 với mọi y
\(\Rightarrow\) -12 - 3|x + 1| - 2(y - 1)2 \(\le\) -12 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x + 1 = 0; y - 1 = 0
\(\Rightarrow\) x = -1; y = 1
Vậy ...
Phần D đề ko rõ là \(\dfrac{5}{2x^2}-3\) hay \(\dfrac{5}{2}\)x2 - 3 nữa
F = \(\dfrac{-5}{3}\) - 2x2
Ta có: -2x2 \(\le\) 0 với mọi x
\(\Rightarrow\) \(\dfrac{-5}{3}-2x^2\) \(\le\) \(\dfrac{-5}{3}\) với mọi x
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy ...
Chúc bn học tốt!
Ta có :
\(\left|x-y\right|\ge0;\left|x+1\right|\ge0\)
\(\Rightarrow A=\left|x-y\right|+\left|x+1\right|+2018\ge2018\forall xy\)
Dấu \("="\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\x=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)
Vậy ...
\(A=\left|x-y\right|+\left|x+1\right|+2018\)
Mà \(\left|x-y\right|;\left|x+1\right|\ge0\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\forall x;y\)
\(\Rightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\x=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)
Vậy A = 2018 khi x;y = -1
a) \(A=\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Thay x=4 (tm) vào A ta có: \(A=\frac{6\cdot4-1}{3\cdot4+2}=\frac{23}{14}\)
Thay x=-1(tm) vào A ta có: \(A=\frac{-1\cdot6-1}{3\cdot\left(-1\right)+2}=\frac{-6-1}{-3+2}=\frac{-7}{-1}=7\)
Thay x=0 (tm) ta có: \(A=\frac{6\cdot0-1}{3\cdot0+2}=\frac{-1}{2}\)
Vậy A=\(\frac{23}{14}\)khi x=4; \(A=7\)khi x=-1; A=\(\frac{-1}{2}\)khi x=0
b) A=\(\frac{6x-1}{3x+2}\left(x\ne\frac{-2}{3}\right)\)
Để A là số nguyên thì 6x-1 chia hết cho 3x+2
\(\Leftrightarrow A=\frac{2\left(3x+2\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Để A nguyên thì \(\frac{5}{3x+2}\)nguyên => 5 chia hết cho 3x+2
Vì x thuộc Z => 3x+2 thuộc Z => 3x+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
3x+2 | -5 | -1 | 1 | 5 |
3x | -7 | -3 | -1 | 3 |
x | \(\frac{-7}{3}\) | -1 | \(\frac{-1}{3}\) | 1 |
Vậy x={-1;1} thì A nguyên