K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DH
0
NC
0
LT
1
AH
Akai Haruma
Giáo viên
29 tháng 6
Lời giải:
$A=x^2+4x=12$
$\Leftrightarrow x^2+4x-12=0$
$\Leftrightarrow (x^2+6x)-(2x+12)=0$
$\Leftrightarrow x(x+6)-2(x+6)=0$
$\Leftrightarrow (x+6)(x-2)=0$
$\Leftrightarrow x+6=0$ hoặc $x-2=0$
$\Leftrightarrow x=-6$ hoặc $x=2$
----------------------
Để $A=x(x+4)$ là số nguyên tố thì phải có 1 trong 2 thừa số $x,x+4$ bằng 1, thừa số còn lại là số nguyên tố.
Vì $x<x+4$ nên $x=1$
Khi đó: $A=x(x+4)=1(1+4)=5$ là snt (thỏa mãn)
Vậy $x=1$
1 tháng 8 2016
Câu 1:
\(xy+x+y=17\)
\(\Rightarrow\left(xy+x\right)+\left(y+1\right)=18\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=18\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=18\)
Do \(x,y\in N\Rightarrow x+1,y+1\ge1\)
Từ đó ta có bảng sau:
x + 1 | 1 | 2 | 3 | 6 | 9 | 18 |
y + 1 | 18 | 9 | 6 | 3 | 2 | 1 |
x | 0 | 1 | 2 | 5 | 8 | 17 |
y | 17 | 8 | 5 | 2 | 1 | 0 |
AS
1