Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x+1}{5}=\frac{2x-7}{3}\)
\(\Rightarrow3\left(x+1\right)=5\left(2x-7\right)\)
\(\Leftrightarrow3x+3=10x-35\)
\(\Leftrightarrow3x-10x=-35-3\)
\(\Leftrightarrow-7x=-38\)
\(\Rightarrow x=\frac{38}{7}\)
Ta có : \(\frac{x}{4}=\frac{9}{x}\)
\(\Rightarrow x^2=9.4\)
=> x2 = 36
=> x = +4;-4
a)\(\left(2x-3\right)\left(x+1\right)< 0\)
\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\) hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại) hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)
\(\Leftrightarrow-1< x< \frac{3}{2}\)
b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)
c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)
Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow x=4\)
1/
a, \(A=\dfrac{2}{3}+\dfrac{3}{4}.\left(-\dfrac{4}{9}\right)=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)
b, \(B=2\dfrac{3}{11}.\dfrac{11}{12}.\left(-2,2\right)=\dfrac{25}{11}.\dfrac{11}{12}.\left(-\dfrac{11}{5}\right)=-\dfrac{55}{12}\)
c, \(C=\left(\dfrac{3}{4}-0,2\right):\left(0,4-\dfrac{4}{5}\right)=\left(\dfrac{3}{4}-\dfrac{1}{5}\right):\left(\dfrac{2}{5}-\dfrac{4}{5}\right)=\dfrac{11}{20}:\left(-\dfrac{2}{5}\right)=-\dfrac{11}{8}\)
2/
a, \(\dfrac{11}{12}-x=\dfrac{2}{3}+\dfrac{1}{4}\\ \Rightarrow\dfrac{11}{12}-x=\dfrac{11}{12}\\ \Rightarrow x=0\)
b, \(2x\left(x-\dfrac{1}{7}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
c, \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\\ \Rightarrow\dfrac{1}{4}:x=-\dfrac{7}{20}\\ \Rightarrow x=-\dfrac{5}{7}\)
a)\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=-5-\frac{1}{4}\)
\(\frac{1}{3}:2x=-\frac{21}{3}\)
\(2x=\frac{1}{3}:\left(\frac{-21}{3}\right)\)
\(2x=-\frac{1}{21}\)
\(x=\frac{-1}{42}\)
b)\(\left(3x-\frac{1}{4}\right).\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}3x=\frac{1}{4}\\x=-\frac{1}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{12}\\x=-\frac{1}{2}\end{array}\right.\)
c)\(\left(2x-5\right).\left(\frac{3}{2}x+9\right).\left(0,3x-12\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-5=0\\\frac{3}{2}x+9=0\\0,3x-12=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x=5\\\frac{3}{2}x=-9\\0,3x=12\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-6\\x=40\end{array}\right.\)
a) 1/4 + 1/3 : 2x = -5
=> 1/3 : 2x = -5 - 1/4
=> 1/3 : 2x = -21/4
=> 2x = 1/3 : (-21/4) = -4/63
=> x = -4/63 : 2 = -2/63
a)Ta có: 3=1.3=3.1=(-1).(-3)=(-3).(-1)
Do đó ta có bảng sau:
x+4 | 1 | 3 | -1 | -3 |
y+3 | 3 | 1 | -3 | -1 |
x | -3 | -1 | -5 | -7 |
y | 0 | -2 | -6 | -4 |
Vậy cặp (x;y) TM là:(-3;0)(-1'-2)(-5;-6)(-7;-4)
b)Ta có:12=1.12=12.1=3.4=4.3=2.6=6.2=(-1).(-12)=(-12).(-1)=(-3).(-4)=(-4).(-3)=(-2).(-6)=(-6).(-2)
Do đó ta có bảng sau:
2x+1 | 1 | 12 | -1 | -12 | 3 | 4 | -3 | -4 | 2 | 6 | -2 | -6 |
y-3 | 12 | 1 | -12 | -1 | 4 | 3 | -4 | -3 | 6 | 2 | -6 | -2 |
2x | 0 | 13 | -2 | -13 | 2 | 3 | -4 | -5 | 1 | 5 | -3 | -7 |
x | 0 | ko TM | -1 | ko TM | 1 | ko TM | -2 | ko TM | ko TM | ko TM | ko TM | ko TM |
y | 15 | 4 | -9 | 2 | 7 | 6 | -1 | -6 | 9 | 5 | -3 | 1 |
Vậy cặp (x;y) TM là:(0;15)(-1;-9)(1;7)(-2;-1)
\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=-5-\frac{1}{4}\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{1}{3}:\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{-4}{63}:2\)
\(x=\frac{-2}{63}\)
\(\)
\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\Rightarrow\frac{1}{3}:2x=-\frac{21}{4}\)
\(\Rightarrow2x=\frac{-4}{63}\)
\(\Rightarrow x=\frac{-2}{63}\)
\(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}}\)
\(\left(2x-5\right)\left(\frac{3}{2}x+9\right)\left(0,3x-12\right)=0\)
Th1 : \(2x-5=0\Rightarrow x=\frac{5}{2}\)
Th2 : \(\frac{3}{2}x+9=0\Rightarrow x=-6\)
Th3 : \(0,3x-12=0\Rightarrow x=\frac{12}{0,3}\)
a, 11/12 - ( 2/5 + x ) = 2/3
<=> \(\frac{2}{5}+x=\frac{11}{12}-\frac{2}{3}=\frac{1}{4}\)
=> x=\(\frac{1}{4}-\frac{11}{12}=-\frac{2}{3}\)
b, 2x . ( x - 1/7 ) = 0
<=>\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{7}=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{7}\end{array}\right.\)
vậy x={\(0;\frac{1}{7}\)}
c, 3/4 + 1/4 : x = 2/5
<=>\(\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=-\frac{7}{20}\)
<=> \(x=\frac{1}{4}:\left(-\frac{7}{20}\right)=-\frac{5}{7}\)
vậy x=-5/7
a) \(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{11}{12}-\frac{2}{5}-x=\frac{2}{3}\)
\(\Leftrightarrow-x=\frac{2}{3}-\frac{11}{12}+\frac{2}{5}=\frac{3}{20}\)
\(\Leftrightarrow x=-\frac{3}{20}\)
b) \(2x\left(x-\frac{1}{7}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{7}=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{7}\end{array}\right.\)
c) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4x}=\frac{2}{5}-\frac{3}{4}=-\frac{7}{20}\)
\(\Leftrightarrow4x=\frac{-20}{7}\)
\(\Leftrightarrow x=-\frac{5}{7}\)