Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)|2x-15|=13`
`**2x-15=13`
`<=>2x=28`
`<=>x=14.`
`**2x-15=-13`
`<=>2x=-2`
`<=>x=-1.`
`b)|7x+3|=66`
`**7x+3=66`
`<=>7x=63`
`<=>x9`
`**7x+3=-66`
`<=>7x=-69`
`<=>x=-69/7`
`c)|5x-2|=0`
`<=>5x-2=0`
`<=>5x=2`
`<=>x=2/5`
\(a,\Leftrightarrow\left[{}\begin{matrix}2x-5=13\\2x-5=-13\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-4\end{matrix}\right.\)
Vậy ...
\(b,\Leftrightarrow\left[{}\begin{matrix}7x+3=66\\7x+3=-66\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-\dfrac{69}{7}\end{matrix}\right.\)
Vậy ...
\(c,\Leftrightarrow5x-2=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy ...
Câu 1:
a) Ta có: x-3 là ước của 13
\(\Leftrightarrow x-3\inƯ\left(13\right)\)
\(\Leftrightarrow x-3\in\left\{1;-1;13;-13\right\}\)
hay \(x\in\left\{4;2;16;-10\right\}\)(thỏa mãn)
Vậy: \(x\in\left\{4;2;16;-10\right\}\)
b) Ta có: \(x^2-7\) là ước của \(x^2+2\)
\(\Leftrightarrow x^2+2⋮x^2-7\)
\(\Leftrightarrow x^2-7+9⋮x^2-7\)
mà \(x^2-7⋮x^2-7\)
nên \(9⋮x^2-7\)
\(\Leftrightarrow x^2-7\inƯ\left(9\right)\)
\(\Leftrightarrow x^2-7\in\left\{1;-1;3;-3;9;-9\right\}\)
mà \(x^2-7\ge-7\forall x\)
nên \(x^2-7\in\left\{1;-1;3;-3;9\right\}\)
\(\Leftrightarrow x^2\in\left\{8;6;10;4;16\right\}\)
\(\Leftrightarrow x\in\left\{2\sqrt{2};-2\sqrt{2};-\sqrt{6};\sqrt{6};\sqrt{10};-\sqrt{10};2;-2;4;-4\right\}\)
mà \(x\in Z\)
nên \(x\in\left\{2;-2;4;-4\right\}\)
Vậy: \(x\in\left\{2;-2;4;-4\right\}\)
Câu 2:
a) Ta có: \(2\left(x-3\right)-3\left(x-5\right)=4\left(3-x\right)-18\)
\(\Leftrightarrow2x-6-3x+15=12-4x-18\)
\(\Leftrightarrow-x+9+4x+6=0\)
\(\Leftrightarrow3x+15=0\)
\(\Leftrightarrow3x=-15\)
hay x=-5
Vậy: x=-5
a) | 2x - 5 | = 13
=> 2x - 5 = 13 hoặc 2x - 5 = -13
+ Nếu 2x - 5 = 13
2x = 13 + 5
2x = 18
x = 18 : 2
x = 9
+ Nếu 2x - 5 = -13
2x = ( -13 ) + 5
2x = -8
x = ( -8 ) : 2
x = -4
=> x = { -4 ; 9 }
Tck nha
|7x + 3| = 66
7x + 3 = 66
7x = 66-3
7x = 63
x = 63 : 7
x = 9
a: x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b: 2x(x+3)=0
=>x(x+3)=0
=>\(\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
c: \(\left(6-x\right)\left(x+10\right)=0\)
=>\(\left[{}\begin{matrix}6-x=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6-0=6\\x=0-10=-10\end{matrix}\right.\)
d: \(\left(5x+20\right)\left(x^2+1\right)=0\)
=>\(5x+20=0\left(x^2+1>=1>0\forall x\right)\)
=>5x=-20
=>x=-4
a) 7x - 5 = 16 b) 156 - 2x = 82 c) 10x + 65 = 125
=> 7x = 16 + 5 => 2x = 156 - 82 => 10x = 125 - 65
=> 7x = 21 => 2x = 74 => 10x = 60
=> x = 21 : 7 => x = 74 : 2 => x = 60 : 10
=> x = 3 => x = 37 => x = 6
Vậy x = 3 Vậy x = 37 Vậy x = 6
d) 8x + 2x = 25.2 e) 15 + 5x = 40 f) 5x + 2x = 6 - 5
=> 10x = 50 => 5x = 40 - 15 => 7x = 1
=> x = 50 : 10 => 5x = 25 => x = 1 : 7
=> x = 5 => x = 25 : 5 => x = 1/7
Vậy x = 5 => x = 5 Vậy x = 1/7
Vậy x = 5
g) 5x + x = 150 : 2 + 3 h) 6x + 3x = 5 : 5 + 3 i) 5x + 3x = 3 : 3 . 4 + 12
=> 6x = 75 + 3 => 9x = 1 + 3 => 8x = 1 . 4 + 12
=> 6x = 78 => 9x = 4 => 8x = 4 + 12
=> x = 78 : 6 => x = 4 : 9 => 8x = 16
=> x = 13 => x = 4/9 => x = 16 : 8
Vậy x = 13 Vậy x = 4/9 => x = 2
Vậy x = 2
j) 4x + 2x = 68 - 2 : 2 k) 5x + x = 39 - 3 : 3 l) 7x - x = 5 : 5 + 3 . 2 - 7
=> 6x = 68 - 1 => 6x = 39 - 1 => 6x = 1 + 6 - 7
=> 6x = 67 => 6x = 38 => 6x = 7 - 7
=> x = 67 : 6 => x = 38 : 6 => 6x = 0
=> x = 67/6 => x = 19/3 => x = 0
Vậy x = 67/6 Vậy x = 19/3 Vậy x = 0
m) 7x - 2x = 6 : 6 + 44 : 11
=> 5x = 1 + 4
=> 5x = 5
=> x = 5 : 5
=> x = 1
Vậy x = 1
Mỏi tay ~~~~~~~~~~~~~~
\(-12\left(x-5\right)+7\left(3-x\right)=15\)
\(\Rightarrow-12x+60+21-7x=15\)
\(\Rightarrow-12x-7x=15-21-60\)
\(\Rightarrow-19x=-66\)
\(\Rightarrow x=\frac{66}{19}\)
\(\left|2x-5\right|=12\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=12\\2x-5=-12\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=17\\2x=-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{17}{2}\left(t/m\right)\\x=-\frac{7}{2}\left(t/m\right)\end{cases}}\)
a) |2x-5| = 13
suy ra 2x-5 thuộc{-13;13}
ta có bảng: