Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
Giải:
Ta có:
\(n+1⋮2n-3\)
\(\Rightarrow2\left(n+1\right)⋮2n-3\)
\(\Rightarrow2n+2⋮2n-3\)
\(\Rightarrow\left(2n-3\right)+5⋮2n-3\)
\(\Rightarrow5⋮2n-3\)
\(\Rightarrow2n-3\in\left\{1;5\right\}\)
+) \(2n-3=1\Rightarrow n=2\)
+) \(2n-3=5\Rightarrow n=4\)
Vậy \(n\in\left\{2;4\right\}\)
*Lưu ý: còn trường hợp n = 1 nữa nhưng khi đó tỉ 2n - 3 = -1. Bạn lấy số đó thì thay vào.
1)Ta có:[a,b].(a,b)=a.b
120.(a,b)=2400
(a,b)=20
Đặt a=20k,b=20m(ƯCLN(k,m)=1,\(k,m\in N\))
\(\Rightarrow20k\cdot20m=2400\)
\(400\cdot k\cdot m=2400\)
\(k\cdot m=6\)
Mà ƯCLN(k,m)=1,\(k,m\in N\)
Ta có bảng giá trị sau:
k | 2 | 3 | 1 | 6 |
m | 3 | 2 | 6 | 1 |
a | 40 | 60 | 20 | 120 |
b | 60 | 40 | 120 | 20 |
Mà a,b là SNT\(\Rightarrow\)a,b không tìm được
2)Mình nghĩ đề đúng là cho 2a+3b chia hết cho 15
Ta có:\(2a+3b⋮15\Rightarrow3\left(2a+3b\right)⋮15\Rightarrow6a+9b⋮15\)
Ta có:\(9a+6b+6a+9b=15a+15b=15\left(a+b\right)⋮15\)
Mà \(6a+9b⋮15\Rightarrow9a+6b⋮15\left(đpcm\right)\)
2, - ( a + b + c ) - ( b - c -a ) + ( 1 - a - b ) - ( c - 3b )
= -a - b -c - b + c + a + 1 - a - b - c + 3b
= (a-a) - (b+b+b) + (c-c) + (-a) + (-c) + 3b
= 0 - 3b + 0 + (-a) + (-c) + 3b
= (3b-3b) + (-a) + (-c)
= 0 + (-a) + (-c)
= (-a) + (-c)
3, ( b - c - 6 ) - ( 7 - a + b ) + c
= b - c - 6 - 7 + a - b + c
= (b-b) + (c-c) - (6+7) + a
= 0 + 0 + 13 + a
= 13 + a
6, 2a - { a - b [ a - b - ( a + b + c ) + 2b ] - c - b }
= 2a - { a - b [ a - b - a - b - c + 2b ] - c - b }
= 2a - { a - b [ ( a - a ) - (b+b) - c + 2b ] - c - b }
= 2a - { a - b [ 0 - 0 - 2b - c + 2b ] - c - b }
= 2a - { a- b [ (2b - 2b) - c ] - c - b }
= 2a - { a - b [ 0 - c ] - c - b }
= 2a - { a - b.(-c) - c - b}
= 2a - a - b.(-c) - c - b
= 1a - (-b).c - c - b
= a - (-b).c - c.1 - b
= a - [(-b) - 1].c - b
ko chắc lắm
a; 4a + 3 và 2a + 3
Gọi ƯCLN(4a + 3; 2a + 3) = d
Theo bài ra ta có:
\(\left\{{}\begin{matrix}4a+3⋮d\\2a+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+6⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4a+3-4a-6⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\\left(4a-4a\right)+\left(2-6\right)⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4a+3⋮d\\4⋮d\end{matrix}\right.\) ⇒ d \(\in\) Ư(4) = {1; 2; 4}
Nếu d = 2 ⇒ 4a + 3 ⋮ 2 ⇒ 3 ⋮ 2 (vô lý)
Nếu d = 4 ⇒ 4a + 3 ⋮ 4 ⇒ 3 ⋮ 4 (vô lý)
Vậy d = 1 ⇒ (4a + 3; 2a + 3) = 1
Hay 4a + 3 và 2a + 3 là hai số nguyên tố cùng nhau với mọi giá trị của a.
Câu 1 : 2x.4x+2.8x+3=524288
=> 2x.(22)x+2.(23)x+3 = 219
=> 2x.22x+2.23x+3 = 219
=> 2x+2x+2+3x+3 = 219
=> x+2x+2+3x+3 = 19
=> (x+2x+3x)+2+3 = 19
6x+5 = 19
6x = 19-5
6x =14
x = 7/3
Bài 2 : (a+b)3 = aba
=> a và b mọi số tự nhiên ( ĐK : \(\forall a,b\in N\) và \(a,b\ne0\)
\(2^x.4^{x+2}+8^{x+3}=524288\)
\(2^x.2^{2\left(x+2\right)}.2^{3\left(x+3\right)}=524288\)
\(2^x.2^{2x+4}.2^{3x+9}=524288\)
\(2^{x+2x+4+3x+9}=524288\)
\(2^{6x+13}=524288\)
\(2^{6x}.2^{13}=2^{19}\)
\(2^{6x}=2^{19}:2^{13}\)
\(2^{6x}=2^6\)
\(\Rightarrow6x=6\)
\(\Rightarrow x=1\)