Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3,5\right)^2+\left(y-\dfrac{1}{10}\right)^4\le0\)
Vì: \(\left(x-3,5\right)^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3,5\right)^2=0\\\left(y-\dfrac{1}{10}\right)^4=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x-3,5=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3,5\\y=\dfrac{1}{10}\end{matrix}\right.\)
a)Ta có:
\(\left(x-3,5\right)^2+\left(y-\dfrac{1}{10}\right)^4\le0\)
\(\Rightarrow x-3,5=y-\dfrac{1}{10}=0\Leftrightarrow\left\{{}\begin{matrix}x=3,5\\y=\dfrac{1}{10}=0,1\end{matrix}\right.\)
b) Ta có:
\(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=\dfrac{-6}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{35}\\x=\dfrac{-13}{35}\end{matrix}\right.\)
b: ta có: \(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{-1}{7}\\5x=\dfrac{-13}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{35}\\x=\dfrac{-13}{35}\end{matrix}\right.\)
ta có vì |3x-4|>0
|3y+5|>0
Vậy suy ra
|3x-4|=0 và |3y+5|=0
3x-4=0 suy ra x=4/3
3y+5=0 suy ra y=5/3
cái sau cũng làm giống vậy
a)
Ta có : vì|1/2-1/3+x| lớn hơn hoặc bằng 0
Còn -1/4-|y| bé hơn hoặc bằng 0
=> ko tồn tại x
b)
Ta có: |x-y| lớn hơn hoặc bằng 0 và|y+9/25| lớn hơn hoặc bằng 0 mà:
| x-y|+ |y+9/25| =0 => |x-y| =0 và |y+9/25|=0
Xét |y+9/25| có:
| y+9/25|=0 => y+9/25=0 => y=-9/25
Thay y = -9/25 vào |x-y| =0 => x=-9/25
Vậy x=y=-9/25
Bài làm:
Ta có: \(\hept{\begin{cases}\left(x-3,5\right)^2\ge0\\\left(y-\frac{1}{10}\right)^2\ge0\end{cases}\left(\forall x,y\right)}\)
=> \(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^2\ge0\left(\forall x,y\right)\) , mà theo đề bài:
\(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^2\le0\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(x-3,5\right)^2=0\\\left(y-\frac{1}{10}\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{7}{2}\\y=\frac{1}{10}\end{cases}}\)
Ta có :
\(\left(x-3,5\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{10}\right)^4\ge0\forall y\)