K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

\(x+3,5-\frac{4}{7}=\frac{3}{2}-5\frac{1}{8}\)

\(x+3,5-\frac{4}{7}=-\frac{29}{8}\)

\(x+3,5=-\frac{29}{8}+\frac{4}{7}\)

\(x+3,5=-\frac{117}{56}\)

      \(\Leftrightarrow x=-\frac{367}{56}\)

25 tháng 8 2018

Bài 1:

\(A=\left(\frac{-5}{11}+\frac{7}{22}-\frac{4}{33}-\frac{5}{44}\right):\left(38\frac{1}{122}-39\frac{7}{22}\right)\)

\(=\frac{-49}{132}:\left(-\frac{879}{671}\right)=\frac{2989}{105408}\)

Bài 2:

\(\frac{4}{5}-\left(\frac{-1}{8}\right)=\frac{7}{8}-x\)

<=>  \(\frac{7}{8}-x=\frac{27}{40}\)

<=>  \(x=\frac{7}{8}-\frac{27}{40}=\frac{1}{5}\)

Vậy...

25 tháng 8 2018

bài 2 mình tính sai, sửa

.......

<=>  \(\frac{7}{8}-x=\frac{37}{40}\)

<=>  \(x=\frac{7}{8}-\frac{37}{40}=\frac{-1}{20}\)

Vậy....

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x}{3}+\frac{x}{4}-\frac{7}{12}\)

\(\Leftrightarrow\frac{12x-12}{12}+\frac{6x-6}{12}=\frac{4x}{12}+\frac{3x}{12}-\frac{7}{12}\)

Khử mẫu : \(12x-12+6x-6=4x+3x-7\)

\(\Leftrightarrow18x-18=7x-7\Leftrightarrow11x=11\Leftrightarrow x=1\)

9 tháng 8 2020

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x}{3}+\frac{x}{4}-\frac{7}{12}\)

\(\Leftrightarrow\frac{12x-12}{12}+\frac{6x-6}{12}=\frac{4x}{12}+\frac{3x}{12}-\frac{7}{12}\)

\(\Leftrightarrow\frac{12x-12+6x-6}{12}=\frac{4x+3x-7}{12}\)

\(\Leftrightarrow18x-18=7x-7\)

\(\Leftrightarrow18x+7x=18+7\)

\(\Leftrightarrow25x=25\)

\(\Leftrightarrow x=1\)

9 tháng 8 2020

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x-1}{3}+\frac{x-1}{4}+\frac{x-1}{5}\)

\(\Leftrightarrow\frac{x-1}{1}+\frac{x-1}{2}-\frac{x-1}{3}-\frac{x-1}{4}-\frac{x-1}{5}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{1}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\right)=0\)

Vì \(\frac{1}{1}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\ne0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

\(\frac{x-1}{1}+\frac{x-1}{2}=\frac{x-1}{3}+\frac{x-1}{4}+\frac{x-1}{5}\)

\(\Leftrightarrow\frac{x-1}{1}+\frac{x-1}{2}-\frac{x-1}{3}-\frac{x-1}{4}-\frac{x-1}{5}=0\)

\(\Leftrightarrow\left(x-1\right)\left(1+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\ne0\right)=0\)

\(\Leftrightarrow x=1\)

1 tháng 11 2018

\(\frac{1}{2}+\frac{2}{3}x=\frac{1}{4}\)

            \(\frac{2}{3}x=\frac{1}{4}-\frac{1}{2}\)

            \(\frac{2}{3}x=-\frac{1}{4}\)

                 \(x=-\frac{1}{4}:\frac{2}{3}\)

                \(x=-\frac{3}{8}\)

1 tháng 11 2018

\(\frac{2}{3}x\)\(=\)\(\frac{1}{4}\)\(-\)\(\frac{1}{2}\)

\(\frac{2}{3}x\)\(=\)\(\frac{-1}{4}\)

\(x\)\(=\)\(\frac{-1}{4}\)\(:\)\(\frac{2}{3}\)

\(x\)\(=\)\(\frac{-3}{8}\)

1 tháng 8 2019

\(\left|x\right|=7\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

Vậy \(x\in\left\{\pm7\right\}\)

1 tháng 8 2019

\(\left|x\right|=0\)

\(\Rightarrow x=0\)

Vậy x = 0

17 tháng 9 2016

 A=5-3(2x+1)^2

Ta có : (2x+1)^2\(\ge\)0

\(\Rightarrow\)-3(2x-1)^2\(\le\)0

\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5

Dấu = xảy ra khi : (2x-1)^2=0

=> 2x-1=0 =>x=\(\frac{1}{2}\)

Vậy : A=5 tại x=\(\frac{1}{2}\)

Ta có : (x-1)^2 \(\ge\)0

=> 2(x-1)^2\(\ge\)0

=>2(x-1)^2+3 \(\ge\)3

=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)

Dấu = xảy ra khi : (x-1)^2 =0

=> x = 1

Vậy : B = \(\frac{1}{3}\)khi x = 1

\(\frac{x^2+8}{x^2+2}\)\(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)

Làm như câu B                   GTNN = 4 khi x =0 

k vs nha

18 tháng 8 2016

\(\Rightarrow\frac{x+5}{2015}+1+\frac{x+4}{2016}+1+\frac{x+3}{2017}+1=\frac{x+2015}{5}+1+\frac{x+2016}{4}+1+\frac{x+2017}{3}+1\)

\(\Rightarrow\frac{x+2020}{2015}+\frac{x+2020}{2016}+\frac{x+2020}{2017}=\frac{x+2020}{5}+\frac{x+2020}{4}+\frac{x+2020}{3}\)

\(\Rightarrow\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)

\(\Rightarrow x=-2020\)

23 tháng 12 2016

thanks

6 tháng 7 2018

a )  

Ta có : 

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)

và \(x+y-z=69\)

ADTCDTSBN , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)

Vậy ...

b )  

Ta có : 

\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)

\(\Rightarrow x=14,4.3:2=21,6\)

và \(3x+5y-7z=30\)

Thay vào làm tiếp : 

c ) 

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN ) 

\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)

\(=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)

Vậy ...

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405