Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{-16}{-80}=\frac{1}{5}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{1}{5}.64=12,8\\y^2=\frac{1}{5}.144=28,8\\z^2=\frac{1}{5}.225=45\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\pm\sqrt{12,8}\\y=\pm\sqrt{28,8}\\z=\pm\sqrt{45}\end{cases}}\)
Với \(x=\sqrt{12,8}\Rightarrow\hept{\begin{cases}y=\sqrt{28,8}\\z=\sqrt{45}\end{cases}}\)
Với \(x=-\sqrt{12,8}\Rightarrow\hept{\begin{cases}y=-\sqrt{28,8}\\z=-\sqrt{45}\end{cases}}\)
a) x.(x-y) = 3 = 1.3 = (-1).(-3)
TH1: *x = 1
=> x-y = 3 => 1 - y = 3 => y = -2
* x = 3
=> x -y = 1 => 3 - y = 1 => y = 2
TH2: * x = -1
=> x - y = -3 => -1 - y = -3 => y = 2
* x = -3
=> x-y = -1 => -3 -y = -1 => y = -2
KL:...
b) ta có: \(x=\frac{y+2}{y-1}=\frac{y-1+3}{y-1}=1-\frac{3}{y-1}\)
Để x là số nguyên
\(\Rightarrow\frac{3}{y-1}\in z\Rightarrow3⋮y-1\Rightarrow y-1\inƯ_{\left(3\right)}=\left(\pm1;\pm3\right)\)
nếu y-1 = 1 => y = 2 => x = 1 - 3/2-1 => x = 1-3 => x = -2
...
rùi bn cứ làm như z để tìm x;y nhé
phần c bn lm tương tự như phần b nha!
a) Ta có :\(\left(x+2\right)^2\ge0;\left(y-4\right)^4\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :\(\left(x+y-11\right)^2\ge0;\left(x-y-4\right)^2\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+y-11\right)^2=0\\\left(x-y-4\right)^2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+y=11\\x-y=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\left(11+4\right):2=7,5\\y=\left(11-4\right):2=3,5\end{cases}}\)
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5
a) Ta có :(x+2)2≥0;(y−4)4≥0;Với∀x,y∈Z
⇒[
(x+2)2=0 |
(y−3)4=0 |
⇒[
x+2=0 |
y−3=0 |
⇒[
x=−2 |
y=3 |
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :(x+y−11)2≥0;(x−y−4)2≥0;Với∀x,y∈Z
⇒[
(x+y−11)2=0 |
(x−y−4)2=0 |
⇒[
x+y=11 |
x−y=4 |
⇒[
x=(11+4):2=7,5 |
y=(11−4):2=3,5 |
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5
\(=\frac{y+x+z+4}{x+4+y+z}=1\)
từ \(\frac{y+x}{x+4}=1\Rightarrow y+x=x+4\Rightarrow y=4\)
\(\frac{1}{x}=\frac{2}{y}\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{x+y}{1+2}=\frac{4}{3}\)
=> x=4/3.1=4/3
y=4/3.2=8/3